• Albert, M. R., , and Krajeski G. N. , 1998: A fast, physically-based point snow melt model for distributed applications. Hydrol. Processes, 12 , (10–11). 18091824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, E. A., 1973: National Weather Service River Forecast System—Snow Accumulation and Ablation Model. NOAA Tech. Memo. NWS HYDRO-17, 217 pp.

    • Search Google Scholar
    • Export Citation
  • Arola, A., and Coauthors, 2003: A new approach to estimating the albedo for snow-covered surfaces in the satellite UV method. J. Geophys. Res., 108 , 4531. doi:10.1029/2003JD003492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, D. G., , Ruschy D. L. , , and Wall D. B. , 1990: The albedo decay of prairie snows. J. Appl. Meteor., 29 , 179187.

  • Barlage, M., , Zeng X. , , Wei H. , , and Mitchell K. E. , 2005: A global 0.05° maximum albedo dataset of snow-covered land based on MODIS observations. Geophys. Res. Lett., 32 , L17405. doi:10.1029/2005GL022881.

    • Search Google Scholar
    • Export Citation
  • Bras, R. L., 1990: Hydrology: An Introduction to Hydrologic Science. Addison-Wesley, 643 pp.

  • Cess, R. D., , and Potter G. L. , 1988: A methodology for understanding and intercomparing atmospheric climate feedback processes in general circulation models. J. Geophys. Res., 93 , 83058314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., , Bowling L. C. , , and Lettenmaier D. P. , 2003: Variable infiltration capacity cold land process model updates. Global Planet. Change, 38 , (1–2). 151159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., , Neilson R. P. , , and Phillips D. L. , 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33 , 140158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denoth, A., 2003: Structural phase changes of the liquid water component in Alpine snow. Cold Reg. Sci. Technol., 37 , 227232.

  • Denoth, A., , Foglar A. , , Weiland P. , , Matzler C. , , Aebischer H. , , Tiuri M. , , and Sihvola A. , 1984: A comparative study of instruments for measuring the liquid water content of snow. J. Appl. Phys., 56 , 21542160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenberg, D. S., , and Kauzmann W. , 1969: The Structure and Properties of Water. Oxford University Press, 296 pp.

  • Ek, M. B., , Mitchell K. E. , , Lin Y. , , Rogers E. , , Grunmann P. , , Koren V. , , Gayno G. , , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108 , 8851. doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Green, R. O., , Dozier J. , , Roberts D. A. , , and Painter T. H. , 2002: Spectral snow reflectance models for grain size and liquid water fraction in melting snow for the solar reflected spectrum. Ann. Glaciol., 34 , 7173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grenfell, T. C., , Warren S. G. , , and Mullen P. C. , 1994: Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J. Geophys. Res., 99 , 1866918684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya, , Karl T. R. , , and Knight T. W. , 1994: Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science, 263 , 198200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hedstrom, N. R., , and Pomeroy J. W. , 1998: Measurements and modelling of snow interception in the boreal forest. Hydrol. Processes, 12 , 16111625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hood, E., , Williams M. , , and Cline D. , 1999: Sublimation from a seasonal snowpack at a continental, mid-latitude alpine site. Hydrol. Processes, 13 , 17811797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, J., , and Miller N. L. , 2007: Analysis of the impact of snow on daily weather variability in mountainous regions using MM5. J. Hydrometeor., 8 , 245258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, J., , Gao X. , , Yang Z-L. , , Bales R. C. , , Sorooshian S. , , Dickinson R. E. , , Sun S-F. , , and Wu G-X. , 1999: Comparative analyses of physically based snowmelt models for climate simulations. J. Climate, 12 , 26432657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Z. H., , and Simpson J. J. , 2001: Anisotropic reflectance of snow observed from space over the Arctic and its effect on solar energy balance. Remote Sens. Environ., 75 , 6375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM.89. USA Cold Regions Research and Engineering Laboratory Special Rep. 91, 16 pp.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., , Groisman P. Ya , , Knight R. W. , , and Heim R. R. , 1993: Recent variations of snow cover and snowfall in North America and their relation to precipitation and temperature variations. J. Climate, 6 , 13271344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendra, J. R., , Ulaby F. T. , , and Sarabandi K. , 1994: Snow probe for in situ determination of wetness and density. IEEE Trans. Geosci. Remote Sens., 32 , 11521159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimball, J. S., , Running S. W. , , and Nemani R. R. , 1997: An improved method for estimating surface humidity from daily minimum temperature. Agric. For. Meteor., 85 , 8789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, V., , Schaake J. , , Mitchell K. , , Duan Q. , , Chen F. , , and Baker J. , 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104 , 1956919585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., , and Zhou X. , 2003: Assessment of the accuracy of snow surface direct beam spectral albedo under a variety of overcast skies derived by a reciprocal approach through radiative transfer simulation. Appl. Opt., 42 , 54275441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macelloni, G., , Paloscia S. , , Pampaloni P. , , Brogioni M. , , Ranzi R. , , and Crepaz A. , 2005: Monitoring of melting refreezing cycles of snow with microwave radiometers: The Microwave Alpine Snow Melting Experiment (MASMEx 2002–2003). IEEE Trans. Geosci. Remote Sens., 43 , 24312442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., , Wood A. W. , , Adam J. C. , , Lettenmaier D. P. , , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15 , 32373251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melloh, R. A., 1999: A synopsis and comparison of selected snowmelt algorithms. U.S. Army Corps of Engineers CRREL Rep. 99, 8 pp.

  • Melloh, R. A., , Hardy J. P. , , Bailey R. N. , , and Hall T. J. , 2002a: An efficient snow albedo model for the open and sub-canopy. Hydrol. Processes, 16 , 35713584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melloh, R. A., , Hardy J. P. , , Davis R. E. , , and Robinson P. B. , 2002b: Spectral albedo/reflectance of littered forest snow during the melt season. Hydrol. Processes, 15 , 34093422.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2001: The Community Noah Land Surface Model (LSM)—user’s guide (v2.2). [Available online at http://www.emc.ncep.noaa.gov/mmb/gcp/noahlsm/README_2.2.htm].

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109 , D07S90. doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Molotch, N. P., , Painter T. H. , , Bales R. C. , , and Dozier J. , 2004: Incorporating remotely-sensed snow albedo into a spatially-distributed snowmelt model. Geophys. Res. Lett., 31 , L03501. doi:10.1029/2003GL019063.

    • Search Google Scholar
    • Export Citation
  • Moody, E. G., , King M. D. , , Shaaf C. B. , , Hall D. K. , , and Platnick S. , 2007: Northern Hemisphere five-year average (2000-2004) spectral albedos of surfaces in the presence of snow: Statistics computed from Terra MODIS land products. Remote Sens. Environ., 111 , 337345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1985: Some empirical evidence for the influence of snow cover on temperature and precipitation. Mon. Wea. Rev., 113 , 15421553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T. H., , and Dozier J. , 2004: The effect of anisotropic reflectance on imaging spectroscopy of snow parameters. Remote Sens. Environ., 89 , 409422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, M., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent. J. Geophys. Res., 108 , 8850. doi:10.1029/2003JD003994.

    • Search Google Scholar
    • Export Citation
  • Pederson, C. A., , and Winther J. G. , 2005: Intercomparison and validation of snow-albedo parameterization schemes in climate models. Climate Dyn., 25 , 351362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., 1994: Light reflection from sea ice during the onset of melt. J. Geophys. Res., 99 , 33513359.

  • Qu, X., , and Hall A. , 2006: Assessing snow albedo feedback in simulated climate change. J. Climate, 19 , 26172630.

  • Ramsay, B. H., 1998: The Interactive Multisensor Snow and Ice Mapping System. Hydrol. Processes, 12 , 15371546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 1994: Analysis of snow feedbacks in 14 general circulation models. J. Geophys. Res., 99 , 2075720771.

  • Robinson, D., , and Kukla G. , 1985: Maximum surface albedo of seasonally snow-covered lands in the Northern Hemisphere. J. Climate Appl. Meteor., 24 , 402411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, D., , and Frei A. , 2000: Seasonal variability of Northern Hemisphere snow extent using visible satellite data. Prof. Geogr., 52 , 307315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roesch, A., , Gilgen H. , , Wild M. , , and Ohmura A. , 1999: Assessment of GCM simulated snow albedo using direct observations. Climate Dyn., 15 , 405418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J., , Cong S. , , and Duan Q. , 2006: The US MOPEX data set. Large Sample Basin Experiments for Hydrological Model Parameterization: Results of the Model Parameter Experiment—MOPEX, V. Andréassian et al., Eds., IAHS Publication 307, 9–28.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , Clark M. P. , , Armstrong R. L. , , McGinnis D. A. , , and Pulwarty R. S. , 1999: Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data. Water Resour. Res., 35 , 21452160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 1. Evaluation of model-simulated snow cover extent. J. Geophys. Res., 108 , 8849. doi:10.1029/2002JD003274.

    • Search Google Scholar
    • Export Citation
  • Shinoda, M., , Utsugi H. , , and Morishima W. , 2001: Spring snow-disappearance timing and its possible influence on temperature fields over central Eurasia. J. Meteor. Soc. Japan, 79 , 3759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, S., , and Wood A. W. , 2008: Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., 35 , L02405. doi:10.1029/2007GL032487.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., , Bohn T. J. , , McCreight J. L. , , Serreze M. C. , , and Lettenmaier D. P. , 2007: A multimodel simulation of pan-Arctic hydrology. J. Geophys. Res., 112 , G04S45. doi:10.1029/2006JG000303.

    • Search Google Scholar
    • Export Citation
  • Stein, J., , Laberge G. , , and Lévesque D. , 1997: Monitoring the dry density and the liquid water content of snow using time domain reflectometry (TDR). Cold Reg. Sci. Technol., 25 , 123136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., , and Nolin A. W. , 2002: Comparison of snow albedo from MISR with ground-based observations on the Greenland ice sheet. IEEE Trans. Geosci. Remote Sens., 40 , 16161625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., , and Running S. W. , 1999: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteor., 93 , 211228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Army Corps Of Engineers, 1956: Snow hydrology: Summary report of the snow investigations. U. S. Army of Engineers North Pacific Division, 437 pp.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , and Zeng X. , 2010: Evaluation of snow albedo in land models for weather and climate studies. J. Appl. Meteor. Climatol., 49 , 363380.

  • Warren, S. G., 1982: Optical properties of snow. Rev. Geophys., 2 , 6789.

  • Warren, S. G., , and Wiscombe W. J. , 1980: A model for the spectral albedo of snow. II. Snow containing atmospheric aerosols. J. Atmos. Sci., 37 , 27342745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S. G., , Brandt R. E. , , and Hinton P. O. , 1998: Effect of surface roughness on bidirectional reflectance of Antarctic snow. J. Geophys. Res., 103 , 2578925807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigmosta, M. S., , Lettenmaier D. P. , , and Vail L. W. , 1994: A distributed hydrology-vegetation model for complex terrain. Water Resour. Res., 30 , 16651679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J., 1980: Improved Mie scattering algorithms. Appl. Opt., 19 , 15051509.

  • Wuttke, S., , Seckmeyer G. , , and König-Langlo G. , 2006: Measurements of spectral snow albedo at Neumayer, Antarctica. Ann. Geophys., 24 , 721.

  • Zhang, T., 2005: Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys., 43 , RG4002. doi:10.1029/2004RG000157.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 194 194 37
PDF Downloads 138 138 25

Noah LSM Snow Model Diagnostics and Enhancements

View More View Less
  • 1 Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington
  • | 2 Environmental Modeling Center, National Centers for Environmental Prediction, Camp Springs, Maryland
  • | 3 Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

A negative snow water equivalent (SWE) bias in the snow model of the Noah land surface scheme used in the NCEP suite of numerical weather and climate prediction models has been noted by several investigators. This bias motivated a series of offline tests of model extensions and improvements intended to reduce or eliminate the bias. These improvements consist of changes to the model’s albedo formulation that include a parameterization for snowpack aging, changes to how pack temperature is computed, and inclusion of a provision for refreeze of liquid water in the pack. Less extensive testing was done on the performance of model extensions with alternate areal depletion parameterizations. Model improvements were evaluated through comparisons of point simulations with National Resources Conservation Service (NRCS) Snowpack Telemetry (SNOTEL) SWE data for deep-mountain snowpacks at selected stations in the western United States, as well as simulations of snow areal extent over the conterminous United States (CONUS) domain, compared with observational data from the NOAA Interactive Multisensor Snow and Ice Mapping System (IMS). The combination of snow-albedo decay and liquid-water refreeze results in substantial improvements in the magnitude and timing of peak SWE, as well as increased snow-covered extent at large scales. Modifications to areal snow depletion thresholds yielded more realistic snow-covered albedos at large scales.

Corresponding author address: Ben Livneh, Wilson Ceramic Laboratory, University of Washington, Box 352700, Seattle, WA 98195-2700. Email: blivneh@hydro.washington.edu

Abstract

A negative snow water equivalent (SWE) bias in the snow model of the Noah land surface scheme used in the NCEP suite of numerical weather and climate prediction models has been noted by several investigators. This bias motivated a series of offline tests of model extensions and improvements intended to reduce or eliminate the bias. These improvements consist of changes to the model’s albedo formulation that include a parameterization for snowpack aging, changes to how pack temperature is computed, and inclusion of a provision for refreeze of liquid water in the pack. Less extensive testing was done on the performance of model extensions with alternate areal depletion parameterizations. Model improvements were evaluated through comparisons of point simulations with National Resources Conservation Service (NRCS) Snowpack Telemetry (SNOTEL) SWE data for deep-mountain snowpacks at selected stations in the western United States, as well as simulations of snow areal extent over the conterminous United States (CONUS) domain, compared with observational data from the NOAA Interactive Multisensor Snow and Ice Mapping System (IMS). The combination of snow-albedo decay and liquid-water refreeze results in substantial improvements in the magnitude and timing of peak SWE, as well as increased snow-covered extent at large scales. Modifications to areal snow depletion thresholds yielded more realistic snow-covered albedos at large scales.

Corresponding author address: Ben Livneh, Wilson Ceramic Laboratory, University of Washington, Box 352700, Seattle, WA 98195-2700. Email: blivneh@hydro.washington.edu

Save