Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part I: Comparison to GRACE Terrestrial Water Storage Estimates and In Situ River Discharges

R. Alkama CNRM-GAME, Météo-France, and CNRS, Toulouse, France

Search for other papers by R. Alkama in
Current site
Google Scholar
PubMed
Close
,
B. Decharme CNRM-GAME, Météo-France, and CNRS, Toulouse, France

Search for other papers by B. Decharme in
Current site
Google Scholar
PubMed
Close
,
H. Douville CNRM-GAME, Météo-France, and CNRS, Toulouse, France

Search for other papers by H. Douville in
Current site
Google Scholar
PubMed
Close
,
M. Becker CNRS/CNES/Université Toulouse 3, LEGOS/GOHS, Toulouse, France

Search for other papers by M. Becker in
Current site
Google Scholar
PubMed
Close
,
A. Cazenave CNRS/CNES/Université Toulouse 3, LEGOS/GOHS, Toulouse, France

Search for other papers by A. Cazenave in
Current site
Google Scholar
PubMed
Close
,
J. Sheffield Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by J. Sheffield in
Current site
Google Scholar
PubMed
Close
,
A. Voldoire CNRM-GAME, Météo-France, and CNRS, Toulouse, France

Search for other papers by A. Voldoire in
Current site
Google Scholar
PubMed
Close
,
S. Tyteca CNRM-GAME, Météo-France, and CNRS, Toulouse, France

Search for other papers by S. Tyteca in
Current site
Google Scholar
PubMed
Close
, and
P. Le Moigne CNRM-GAME, Météo-France, and CNRS, Toulouse, France

Search for other papers by P. Le Moigne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In earth system models, the partitioning of precipitation among the variations of continental water storage, evapotranspiration, and freshwater runoff to the ocean has a major influence on the terrestrial water and energy budgets and thereby on simulated climate on a wide range of scales. The evaluation of continental hydrology is therefore a crucial task that requires offline simulations driven by realistic atmospheric forcing to avoid the systematic biases commonly found in global atmospheric models. Generally, this evaluation is done mainly by comparison with in situ river discharge data, which does not guarantee that the spatiotemporal distribution of water storage and evapotranspiration is correctly simulated. In this context, the Interactions between Soil, Biosphere, and Atmosphere–Total Runoff Integrating Pathways (ISBA-TRIP) continental hydrological system of the Centre National de Recherches Météorologiques is evaluated by using the additional constraint of terrestrial water storage (TWS) variations derived from three independent gravity field retrievals (datasets) from the Gravity Recovery and Climate Experiment (GRACE). On the one hand, the results show that, in general, ISBA-TRIP captures the seasonal and the interannual variability in both TWS and discharges. GRACE provides an additional constraint on the simulated hydrology and consolidates the former evaluation only based on river discharge observations. On the other hand, results indicate that river storage variations represent a significant contribution to GRACE measurements. While this remark highlights the need to improve the TRIP river routing model for a more useful comparison with GRACE [Decharme et al. ( of the present study)], it also suggests that low-resolution gravimetry products do not necessarily represent a strong additional constraint for model evaluation, especially in downstream areas of large river basins where long-term discharge data are available.

Corresponding author address: Ramdane Alkama, CNRM-GAME, Météo-France, and CNRS, URA 1357, 42 av. Gaspard Coriolis, 31057 Toulouse, France. Email: ramdane.alkama@cnrm.meteo.fr

Abstract

In earth system models, the partitioning of precipitation among the variations of continental water storage, evapotranspiration, and freshwater runoff to the ocean has a major influence on the terrestrial water and energy budgets and thereby on simulated climate on a wide range of scales. The evaluation of continental hydrology is therefore a crucial task that requires offline simulations driven by realistic atmospheric forcing to avoid the systematic biases commonly found in global atmospheric models. Generally, this evaluation is done mainly by comparison with in situ river discharge data, which does not guarantee that the spatiotemporal distribution of water storage and evapotranspiration is correctly simulated. In this context, the Interactions between Soil, Biosphere, and Atmosphere–Total Runoff Integrating Pathways (ISBA-TRIP) continental hydrological system of the Centre National de Recherches Météorologiques is evaluated by using the additional constraint of terrestrial water storage (TWS) variations derived from three independent gravity field retrievals (datasets) from the Gravity Recovery and Climate Experiment (GRACE). On the one hand, the results show that, in general, ISBA-TRIP captures the seasonal and the interannual variability in both TWS and discharges. GRACE provides an additional constraint on the simulated hydrology and consolidates the former evaluation only based on river discharge observations. On the other hand, results indicate that river storage variations represent a significant contribution to GRACE measurements. While this remark highlights the need to improve the TRIP river routing model for a more useful comparison with GRACE [Decharme et al. ( of the present study)], it also suggests that low-resolution gravimetry products do not necessarily represent a strong additional constraint for model evaluation, especially in downstream areas of large river basins where long-term discharge data are available.

Corresponding author address: Ramdane Alkama, CNRM-GAME, Météo-France, and CNRS, URA 1357, 42 av. Gaspard Coriolis, 31057 Toulouse, France. Email: ramdane.alkama@cnrm.meteo.fr

Save
  • Alkama, M. R., Kageyama M. , Ramstein G. , Marti O. , Ribstein P. , and Swingedouw D. , 2008: Impact of a realistic river routing in coupled ocean-atmosphere simulations of the Last Glacial Maximum climate. Climate Dyn., 30 , 855869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, K. J., and Kirkby M. J. , 1979: A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull., 24 , 4369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boone, A., Calvet J-C. , and Noilhan J. , 1999: Inclusion of a third soil layer in a land surface scheme using the force–restore method. J. Appl. Meteor., 38 , 16111630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chambers, D. P., 2006: Observing seasonal steric sea level variations with GRACE and satellite altimetry. J. Geophys. Res., 111 , C03010. doi:10.1029/2005JC002914.

    • Search Google Scholar
    • Export Citation
  • Chen, J. L., Wilson C. R. , and Tapley B. D. , 2006: Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet. Science, 313 , 19581960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. L., Wilson C. R. , Famiglietti J. S. , and Rodell M. , 2007: Attenuation effect on seasonal basin-scale water storage changes from GRACE time-variable gravity. J. Geod., 81 , 237245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowley, J. W., Mitrovica J. X. , Bailey R. C. , Tamisiea M. E. , and Davis J. L. , 2006: Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophys. Res. Lett., 33 , L19402. doi:10.1029/2006GL027070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decharme, B., 2007: Influence of runoff parameterization on continental hydrology: Comparison between the Noah and the ISBA land surface models. J. Geophys. Res., 112 , D19108. doi:10.1029/2007JD008463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decharme, B., and Douville H. , 2006a: Introduction of a sub-grid hydrology in the ISBA land surface model. Climate Dyn., 26 , 6578.

  • Decharme, B., and Douville H. , 2006b: Uncertainties in the GSWP-2 precipitation forcing and their impacts on regional and global hydrological simulations. Climate Dyn., 27 , 695713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decharme, B., and Douville H. , 2007: Global validation of the ISBA sub-grid hydrology. Climate Dyn., 29 , 2137.

  • Decharme, B., Douville H. , Boone A. , Habets F. , and Noilhan J. , 2006: Impact of an exponential profile of saturated hydraulic conductivity within the ISBA LSM: Simulations over the Rhône basin. J. Hydrometeor., 7 , 6180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decharme, B., Douville H. , Prigent C. , Papa F. , and Aires F. , 2008: A new river flooding scheme for global climate applications: Off-line evaluation over South America. J. Geophys. Res., 113 , D11110. doi:10.1029/2007JD009376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decharme, B., Alkama R. , Douville E. , Becker M. , and Cazenave A. , 2010: Global evaluation of the ISBA-TRIP continental hydrological system. Part II: Uncertainties in river routing simulation related to flow velocity and groundwater storage. J. Hydrometeor., 11 , 601617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13 , 29002922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2001: Climate drift in a coupled land–atmosphere model. J. Hydrometeor., 2 , 89100.

  • Douville, H., 1998: Validation and sensitivity of the global hydrologic budget in stand-alone simulations with the ISBA land surface scheme. Climate Dyn., 14 , 151171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., 2003: Assessing the influence of soil moisture on seasonal climate variability with AGCMs. J. Hydrometeor., 4 , 10441066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., 2004: Relevance of soil moisture for seasonal atmospheric predictions: Is it an initial value problem? Climate Dyn., 22 , 429446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., Royer J-F. , and Mahfouf J-F. , 1995: A new snow parameterization for the Météo-France climate model. Part 1: Validation in stand-alone experiments. Climate Dyn., 12 , 2135.

    • Search Google Scholar
    • Export Citation
  • Douville, H., Planton S. , Royer J-F. , Stephenson D. B. , Tyteca S. , Kergoat L. , Lafont S. , and Betts R. A. , 2000a: Importance of vegetation feedbacks in doubled-CO2 climate experiments. J. Geophys. Res., 105 , (D11). 1484114861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., Viterbo P. , Mahfouf J-F. , and Beljaars A. C. M. , 2000b: Evaluation of the optimum interpolation and nudging techniques for soil moisture analysis using FIFE data. Mon. Wea. Rev., 128 , 17331756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., Miguez-Macho G. , Weaver C-P. , Walko R. , and Robock A. , 2007: Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. J. Geophys. Res., 112 , D10125. doi:10.1029/2006JD008111.

    • Search Google Scholar
    • Export Citation
  • Gedney, N., and Cox P. M. , 2003: The sensitivity of global climate model simulations to the representation of soil moisture heterogeneity. J. Hydrometeor., 4 , 12651275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gedney, N., Cox P. M. , Douville H. , Polcher J. , and Valdes P. J. , 2000: Characterizing GCM land surface schemes to understand their responses to climate change. J. Climate, 13 , 30663079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Güntner, A., 2009: Improvement of Global Hydrological Models Using GRACE Data. Surv. Geophys., 29 , 375397.

  • Haines, B., and Coauthors, 2003: Instrument of GRACE: GPS augments gravity measurements. GPS World, 14 , 1628.

  • Hanasaki, N., Kanae S. , and Oki T. , 2006: A reservoir operation scheme for global river routing models. J. Hydrol., 327 , 2241.

  • Hansen, M. C., Defries R. S. , Townshend J. R. G. , and Sohlberg R. , 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21 , 13311364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilmjaninov, V., 2007: Hydrological conditions for actions on prevention of ice flooding on the Lena River. Extreme Hydrological Events: New Concepts for Security, O. F. Vasiliev et al., Eds., NATO Science Series, Vol. 78, 279–284.

    • Search Google Scholar
    • Export Citation
  • Kim, H., Yeh P. J-F. , Oki T. , and Kanae S. , 2009: Role of rivers in the seasonal variations of terrestrial water storage over global basins. Geophys. Res. Lett., 36 , L17402. doi:10.1029/2009GL039006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klees, R., Zapreeva E. A. , Winsemius H. C. , and Savenije H. H. G. , 2007: The bias in GRACE estimates of continental water storage variations. Hydrol. Earth Syst. Sci., 11 , 12271241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model. Part 1: Model structure. J. Geophys. Res., 105 , (D20). 2480924822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Dirmeyer P. A. , Hahmann A. N. , Ijpelaar R. , Tyahla L. , Cox P. , and Suarez M. J. , 2002: Comparing the degree of land–atmosphere interaction in four atmospheric general circulation models. J. Hydrometeor., 3 , 363375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Slater A. G. , 2007: Incorporating organic soil into a global climate model. Climate Dyn., 30 , 145160.

  • Lettenmaier, D. P., and Famiglietti J. S. , 2006: Water from on high. Nature, 444 , 562563.

  • Masson, V., Champeaux J-L. , Chauvin C. , Meriguet C. , and Lacaze R. , 2003: A global database of land surface parameters at 1-km resolution for use in meteorological and climate models. J. Climate, 16 , 12611282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., Fan Y. , Weaver C-P. , Walko R. , and Robock A. , 2007: Incorporating water table dynamics in climate modeling: 2. Formulation, validation, and soil moisture simulation. J. Geophys. Res., 112 , D13108. doi:10.1029/2006JD008112.

    • Search Google Scholar
    • Export Citation
  • Molod, A., Salmun H. , and Waugh D. , 2004: The impact on a GCM climate of an extended mosaic technique for the land–atmosphere coupling. J. Climate, 17 , 38773891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe V. , 1970: River forecasting through conceptual models. J. Hydrol., 10 , 282290.

  • Ngo-Duc, T., Polcher J. , and Laval K. , 2005: A 53-year forcing data set for land surface models. J. Geophys. Res., 110 , D06116. doi:10.1029/2004JD005434.

    • Search Google Scholar
    • Export Citation
  • Ngo-Duc, T., Laval K. , Ramillien G. , Polcher J. , and Cazenave A. , 2007: Validation of the land water storage simulated by Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) with Gravity Recovery and Climate Experiment (GRACE) data. Water Resour. Res., 43 , W04427. doi:10.1029/2006WR004941.

    • Search Google Scholar
    • Export Citation
  • Niu, G-Y., and Yang Z-L. , 2006: Assessing a land surface model’s improvements with GRACE estimates. Geophys. Res. Lett., 33 , L07401. doi:10.1029/2005GL025555.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oki, T., and Sud Y. C. , 1998: Design of Total Runoff Integrating Pathways (TRIP)—A global river channel network. Earth Interactions, 2 .[Available online at http://EarthInteractions.org].

    • Search Google Scholar
    • Export Citation
  • Prigent, C., Papa F. , Aires F. , Rossow W. B. , and Matthews E. , 2007: Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J. Geophys. Res., 112 , D12107. doi:10.1029/2006JD007847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramillien, G., Frappart F. , Güntner A. , Ngo-Duc T. , Cazenave A. , and Laval K. , 2006a: Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry. Water Resour. Res., 42 , W10403. doi:10.1029/2005WR004331.

    • Search Google Scholar
    • Export Citation
  • Ramillien, G., Lombard A. , Cazenave A. , Ivins E. R. , Llubes M. , Remy F. , and Biancale R. , 2006b: Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Global Planet. Change, 53 , 198208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., Famiglietti J. S. , Chen J. , Seneviratne S. I. , Viterbo P. , Holl S. , and Wilson C. R. , 2004: Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett., 31 , L20504. doi:10.1029/2004GL020873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sacks, J. W., Cook B. I. , Buenning N. , Levis S. , and Helkow J. H. , 2008: Effects of global irrigation on the near-surface climate. Climate Dyn., 327 , 2241.

    • Search Google Scholar
    • Export Citation
  • Schmidt, R., and Coauthors, 2006: GRACE observations of changes in continental water storage. Global Planet. Change, 50 , 112126.

  • Seo, K-W., Wilson C. R. , Famiglietti J. S. , Chen J. L. , and Rodell M. , 2006: Terrestrial water mass load changes from Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res., 42 , W05417. doi:10.1029/2005WR004255.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19 , 30883111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S., and Milly P. , 2006: Climate model biases in seasonality of continental water storage revealed by satellite gravimetry. Water Resour. Res., 42 , W03201. doi:10.1029/2005WR004628.

    • Search Google Scholar
    • Export Citation
  • Swenson, S., and Wahr J. , 2006: Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33 , L08402. doi:10.1029/2005GL025285.

    • Search Google Scholar
    • Export Citation
  • Swenson, S., Wahr J. , and Milly P. , 2003: Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res., 39 , 1223. doi:10.1029/2002WR001808.

    • Search Google Scholar
    • Export Citation
  • Syed, T. H., Famiglietti J. S. , Chen J. , Rodell M. , Seneviratne S. I. , Viterbo P. , and Wilson C. R. , 2005: Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land–atmosphere water balance. Geophys. Res. Lett., 32 , L24404. doi:10.1029/2005GL024851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syed, T. H., Famiglietti J. S. , Zlotnicki V. , and Rodell M. , 2007: Contemporary estimates of Pan-Arctic freshwater discharge from GRACE and reanalysis. Geophys. Res. Lett., 34 , L19404. doi:10.1029/2007GL031254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., Bettadpur S. , Ries J. C. , Thompson P. F. , and Watkins M. M. , 2004: GRACE measurements of mass variability in the Earth system. Science, 305 , 503505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velicogna, I., and Wahr J. , 2006a: Acceleration of Greenland ice mass loss in spring 2004. Nature, 443 , 329331.

  • Velicogna, I., and Wahr J. , 2006b: Measurements of time-variable gravity show mass loss in Antarctica. Science, 311 , 17541756.

  • Wahr, J., Swenson S. , Zlotnicki V. , and Velicogna I. , 2004: Time-variable gravity from GRACE: First results. Geophys. Res. Lett., 31 , L11501. doi:10.1029/2004GL019779.

    • Search Google Scholar
    • Export Citation
  • Wahr, J., Swenson S. , and Velicogna I. , 2006: Accuracy of GRACE mass estimates. Geophys. Res. Lett., 33 , L06401. doi:10.1029/2005GL025305.

    • Search Google Scholar
    • Export Citation
  • Yeh, P. J-F., Swenson S. C. , Famiglietti J. S. , and Wahr J. , 2006: Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res., 42 , W12203. doi:10.1029/2006WR005374.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 664 389 191
PDF Downloads 276 95 10