• Arndt, D. S., , Basara J. B. , , McPherson R. A. , , Illston B. G. , , McManus G. D. , , and Demko D. B. , 2009: Observations of the overland reintensification of Tropical Storm Erin (2007). Bull. Amer. Meteor. Soc., 90 , 10791093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, S. T., , and Ashley W. S. , 2008: Flood fatalities in the United States. J. Appl. Meteor. Climatol., 47 , 806818.

  • Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev., 115 , 10531070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, K. J., , and Binley A. M. , 1992: The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Processes, 6 , 279298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Search Google Scholar
    • Export Citation
  • Burnash, R. J., , Ferral R. L. , , and McGuire R. A. , 1973: A generalized streamflow simulation system: Conceptual modeling for digital computers. U.S. Department of Commerce National Weather Service and State of California Department of Water Resources Tech. Rep., 204 pp.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20 , 752759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiebrich, C. A., , Grimsley D. L. , , McPherson R. A. , , Kesler K. A. , , and Essenberg G. R. , 2006: The value of routine site visits in managing and maintaining quality data from the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 23 , 406416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., , Breidenbach J. P. , , Seo D-J. , , Miller D. A. , , and O’Bannon T. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13 , 377395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., , and Ryzhkov A. V. , 2005: Calibration of dual-polarization radar in the presence of partial beam blockage. J. Atmos. Oceanic Technol., 22 , 11561166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., , and Ryzhkov A. V. , 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol., 47 , 24452462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., , and Vieux B. E. , 2005: A method for evaluating the accuracy of quantitative precipitation estimates from a hydrologic modeling perspective. J. Hydrometeor., 6 , 115133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, J. V., , Sorooshian S. , , and Yapo P. O. , 1998: Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resour. Res., 34 , 751763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homer, C., and Coauthors, 2007: Completion of the 2001 National Land Cover Database for the Conterminous United States. Photogramm. Eng. Remote Sens., 73 , 337341.

    • Search Google Scholar
    • Export Citation
  • Joss, J., , and Waldvogel A. , 1990: Precipitation measurements and hydrology. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 577–606.

    • Search Google Scholar
    • Export Citation
  • Julien, P. Y., , Saghafian B. , , and Ogden F. L. , 1995: Raster-based hydrologic modeling of spatially-varied surface runoff. Water Resour. Bull., 31 , 523536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavetski, D., , Kuczera G. , , and Franks S. W. , 2006: Bayesian analysis of input uncertainty in hydrological modeling: 2. Application. Water Resour. Res., 42 , W03408. doi:10.1029/2005WR004376.

    • Search Google Scholar
    • Export Citation
  • Koren, V. I., , Smith M. , , Wang D. , , and Zhang Z. , 2000: Use of soil property data in the derivation of conceptual rainfall-runoff model parameters. Proc. 15th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 103–106. [Available online at http://ams.confex.com/ams/annual2000/techprogram/paper_6074.htm].

    • Search Google Scholar
    • Export Citation
  • Koren, V. I., , Reed S. , , Smith M. , , Zhang Z. , , and Seo D. J. , 2004: Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. J. Hydrol., 291 , 297318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leavesley, G. H., , and Stannard L. G. , 1995: The precipitation-runoff modeling system - PRMS. Computer Models of Watershed Hydrology, V. P. Singh, Ed., Water Resources Publications, 281–310.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., , and DeLiberty T. L. , 1993: Precipitation measurement biases in the United States. Water Resour. Bull., 29 , 855861.

  • Marselek, J., 1981: Calibration of the tipping-bucket raingage. J. Hydrol., 53 , 343354.

  • Nash, J., , and Sutcliffe J. , 1970: River flow forecasting through conceptual models. Part I: A discussion of principles. J. Hydrol., 10 , 282290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWS, cited. 2007: NWS directives system. National Weather Service Instruction 10-1605. [Available online at http://www.nws.noaa.gov/directives/].

    • Search Google Scholar
    • Export Citation
  • Nystuen, J. A., 1999: Relative performance of automatic rain gauges under different rainfall conditions. J. Atmos. Oceanic Technol., 16 , 10251043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogden, F. L., , Sharif H. O. , , Senarath S. U. S. , , Smith J. A. , , Baeck M. L. , , and Richardson J. R. , 2000: Hydrologic analysis of the Fort Collins, Colorado, flash flood of 1997. J. Hydrol., 228 , 82100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H., , Ryzhkov A. V. , , Zrnić D. S. , , and Kim K-E. , 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24 , 730748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Coauthors, 1999: Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bull. Amer. Meteor. Soc., 80 , 191216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , and Zrnić D. S. , 1995: Precipitation and attenuation measurements at a 10-cm wavelength. J. Appl. Meteor., 34 , 21212134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , and Zrnić D. S. , 1996: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor., 35 , 20802090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , Giangrande S. E. , , Melnikov V. M. , , and Schuur T. J. , 2005a: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22 , 11381155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , Giangrande S. E. , , and Schuur T. J. , 2005b: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44 , 502515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , Schuur T. J. , , Burgess D. W. , , Heinselman P. L. , , Giangrande S. E. , , and Zrnić D. S. , 2005c: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86 , 809824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shafer, M. A., , Fiebrich C. A. , , Arndt D. , , Fredrickson S. E. , , and Hughes T. W. , 2000: Quality assurance procedures in the Oklahoma Mesonetwork. J. Atmos. Oceanic Technol., 17 , 474494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., , Baeck M. L. , , and Steiner M. , 1996: Catastrophic rainfall from an upslope thunderstorm in the central Appalachians: The Rapidan storm of June 27, 1995. Water Resour. Res., 32 , 30993113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soil Survey Staff, 1994: State Soil Geographic database (STATSGO) data users guide. USDA Natural Resources Conservation Service Miscellaneous Publication 1492, 88–1036.

    • Search Google Scholar
    • Export Citation
  • Soil Survey Staff, 1996: Soil Survey Laboratory methods manual. National Soil Survey Center, Soil Conservation Service Soil Survey Investigations Rep. 42, version 2.0, 693–1036.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., , and Zrnić D. S. , 1993: An algorithm to deduce hydrometeor types and contents from multiparameter radar data. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 513–516.

    • Search Google Scholar
    • Export Citation
  • USDA, 1994: State Soil Geographic (STATSGO) data base: Data use information. USDA Miscellaneous Publication 1492, 113 pp.

  • Vivekanandan, J., , Zrnić D. S. , , Ellis S. M. , , Oye R. , , Ryzhkov A. V. , , and Straka J. , 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80 , 381388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vrugt, J. A., , Diks C. G. H. , , Gupta H. V. , , Bouten W. , , and Verstraten J. M. , 2005: Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation. Water Resour. Res., 41 , W01017. doi:10.1029/2004WR003059.

    • Search Google Scholar
    • Export Citation
  • Vrugt, J. A., , ter Braak C. J. F. , , Clark M. P. , , Hyman J. M. , , and Robinson B. A. , 2008: Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour. Res., 44 , W00B09. doi:10.1029/2007WR006720.

    • Search Google Scholar
    • Export Citation
  • Vrugt, J. A., , ter Braak C. J. F. , , Diks C. G. H. , , Robinson B. A. , , Hyman J. M. , , and Higdon D. , 2009: Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int. J. Nonlinear Sci. Numer. Simul., 10 , 273290.

    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., , Giangrande S. E. , , and Marzano F. S. , 2009: Rainfall estimation from polarimetric S-band radar measurements: Validation of a neural network approach. J. Appl. Meteor. Climatol., 48 , 20222036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J., , and Brandes E. , 1979: Radar measurement of rainfall—A summary. Bull. Amer. Meteor. Soc., 60 , 10481058.

  • Yates, D. N., , Warner T. T. , , and Leavesley G. H. , 2000: Prediction of a flash flood in complex terrain. Part II: A comparison of flood discharge simulations using rainfall input from radar, a dynamic model, and an automated algorithmic system. J. Appl. Meteor., 39 , 815825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., 1975: On radar-raingauge comparisons. J. Appl. Meteor., 14 , 14301436.

  • Zrnić, D. S., , and Ryzhkov A. V. , 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80 , 389406.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 18 18 2
PDF Downloads 9 9 2

Impacts of Polarimetric Radar Observations on Hydrologic Simulation

View More View Less
  • 1 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
  • | 3 Department of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma
  • | 4 NOAA/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • | 5 Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
© Get Permissions
Restricted access

Abstract

Rainfall estimated from the polarimetric prototype of the Weather Surveillance Radar-1988 Doppler [WSR-88D (KOUN)] was evaluated using a dense Micronet rain gauge network for nine events on the Ft. Cobb research watershed in Oklahoma. The operation of KOUN and its upgrade to dual polarization was completed by the National Severe Storms Laboratory. Storm events included an extreme rainfall case from Tropical Storm Erin that had a 100-yr return interval. Comparisons with collocated Micronet rain gauge measurements indicated all six rainfall algorithms that used polarimetric observations had lower root-mean-squared errors and higher Pearson correlation coefficients than the conventional algorithm that used reflectivity factor alone when considering all events combined. The reflectivity based relation R(Z) was the least biased with an event-combined normalized bias of −9%. The bias for R(Z), however, was found to vary significantly from case to case and as a function of rainfall intensity. This variability was attributed to different drop size distributions (DSDs) and the presence of hail. The synthetic polarimetric algorithm R(syn) had a large normalized bias of −31%, but this bias was found to be stationary.

To evaluate whether polarimetric radar observations improve discharge simulation, recent advances in Markov Chain Monte Carlo simulation using the Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) were used. This Bayesian approach infers the posterior probability density function of model parameters and output predictions, which allows us to quantify HL-RDHM uncertainty. Hydrologic simulations were compared to observed streamflow and also to simulations forced by rain gauge inputs. The hydrologic evaluation indicated that all polarimetric rainfall estimators outperformed the conventional R(Z) algorithm, but only after their long-term biases were identified and corrected.

Corresponding author address: Jonathan J. Gourley, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072-7303. Email: jj.gourley@noaa.gov

This article included in the State of the Science of Precipitation special collection.

Abstract

Rainfall estimated from the polarimetric prototype of the Weather Surveillance Radar-1988 Doppler [WSR-88D (KOUN)] was evaluated using a dense Micronet rain gauge network for nine events on the Ft. Cobb research watershed in Oklahoma. The operation of KOUN and its upgrade to dual polarization was completed by the National Severe Storms Laboratory. Storm events included an extreme rainfall case from Tropical Storm Erin that had a 100-yr return interval. Comparisons with collocated Micronet rain gauge measurements indicated all six rainfall algorithms that used polarimetric observations had lower root-mean-squared errors and higher Pearson correlation coefficients than the conventional algorithm that used reflectivity factor alone when considering all events combined. The reflectivity based relation R(Z) was the least biased with an event-combined normalized bias of −9%. The bias for R(Z), however, was found to vary significantly from case to case and as a function of rainfall intensity. This variability was attributed to different drop size distributions (DSDs) and the presence of hail. The synthetic polarimetric algorithm R(syn) had a large normalized bias of −31%, but this bias was found to be stationary.

To evaluate whether polarimetric radar observations improve discharge simulation, recent advances in Markov Chain Monte Carlo simulation using the Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) were used. This Bayesian approach infers the posterior probability density function of model parameters and output predictions, which allows us to quantify HL-RDHM uncertainty. Hydrologic simulations were compared to observed streamflow and also to simulations forced by rain gauge inputs. The hydrologic evaluation indicated that all polarimetric rainfall estimators outperformed the conventional R(Z) algorithm, but only after their long-term biases were identified and corrected.

Corresponding author address: Jonathan J. Gourley, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072-7303. Email: jj.gourley@noaa.gov

This article included in the State of the Science of Precipitation special collection.

Save