• Abramopoulos, F., , Rosenzweig C. , , and Choudhury B. , 1988: Improved ground hydrology calculations for global climate models (GCMs): Soil water movement and evapotranspiration. J. Climate, 1 , 921941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, K. J., 1982a: Macropores and water flow in soils. Water Resour. Res., 18 , 13111325.

  • Beven, K. J., 1982b: On subsurface stormflow: An analysis of response times. Hydrol. Sci. J., 27 , 505521.

  • Beven, K. J., 1984: Infiltration into a class of vertically non-uniform soils. Hydrol. Sci. J., 29 , 425434.

  • Beven, K. J., , and Kirkby M. J. , 1979: A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull., 24 , 4369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1996: A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. NCAR Tech. Note NCAR/TN-417+STR, 150 pp.

    • Search Google Scholar
    • Export Citation
  • Boone, A., , and Wetzel P. J. , 1996: Issues related to low resolution modeling of soil moisture: Experience with the PLACE model. Global Planet. Change, 13 , 161181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, R. H., , and Corey A. T. , 1964: Hydraulic properties in porous media. Colorado State University Hydrology Paper 3, 27 pp.

  • Chen, J., , and Kumar P. , 2001: Topographic influence of the seasonal and interannual variation of water and energy balance of basins in North America. J. Climate, 14 , 19892014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, H. I., 2006: 3-D volume averaged soil-moisture transport model: A scalable scheme for representing subgrid topographic control in land-atmosphere interactions. Ph.D. dissertation, University of Illinois at Urbana–Champaign, 189 pp.

  • Choi, H. I., , Kumar P. , , and Liang X-Z. , 2007: Three-dimensional volume-averaged soil moisture transport model with a scalable parameterization of subgrid topographic variability. Water Resour. Res., 43 , W04414. doi:10.1029/2006WR005134.

    • Search Google Scholar
    • Export Citation
  • Clapp, R. B., , and Hornberger G. M. , 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14 , 601604.

  • Cosby, B. J., , Hornberger G. M. , , Clapp R. B. , , and Ginn T. R. , 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20 , 682690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2001: Common Land Model (CLM): Technical documentation and user’s guide. Georgia Institute of Technology Doc., 69 pp. [Available online at http://climate.eas.gatech.edu/dai/clmdoc.pdf].

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84 , 10131023.

  • Elsenbeer, H., , Cassel D. K. , , and Castro J. , 1992: Spatial analysis of soil hydraulic conductivity in a tropical rainforest catchment. Water Resour. Res., 28 , 32013214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., , and Eagleson P. S. , 1989: Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability. J. Climate, 2 , 816831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., , and Wood E. F. , 1994: Multiscale modeling of spatially variable water and energy balance processes. Water Resour. Res., 30 , 30613078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., and Coauthors, cited. 2004: A ten-year vision for research on terrestrial-atmospheric interactions: Advancing coupled land-atmosphere prediction. CUAHSI Cyberseminar Series Vision Paper, 32 pp. [Available online at http://www.cuahsi.org/cyberseminars/Gochis-20041201-paper.pdf].

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., , Thornton P. E. , , Oleson K. W. , , and Bonan G. B. , 2007: The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction. J. Hydrometeor., 8 , 862880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., , and Chase T. N. , 2007: Representing a new MODIS consistent land surface in the Community Land Model (CLM3.0). J. Geophys. Res., 112 , G01023. doi:10.1029/2006JG000168.

    • Search Google Scholar
    • Export Citation
  • Levine, J. B., , and Salvucci G. D. , 1999: Equilibrium analysis of groundwater–vadose zone interactions and the resulting spatial distribution of hydrologic fluxes across a Canadian prairie. Water Resour. Res., 35 , 13691383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X-Z., , Li L. , , Kunkel K. E. , , Ting M. , , and Wang J. X. L. , 2004: Regional climate model simulation of U.S. precipitation during 1982–2002. Part 1: Annual cycle. J. Climate, 17 , 35103528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X-Z., and Coauthors, 2005a: Development of land surface albedo parameterization bases on Moderate Resolution Imaging Spectroradiometer (MODIS) data. J. Geophys. Res., 110 , D11107. doi:10.1029/2004JD005579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X-Z., , Choi H. , , Kunkel K. E. , , Dai Y. , , Joseph E. , , Wang J. X. L. , , and Kumar P. , 2005b: Development of the regional Climate-Weather Research and Forecasting (CWRF) model: Surface boundary conditions. Illinois State Water Survey Scientific Research Rep. ISWS SR 2005-01, 32 pp. [Available online at http://www.isws.illinois.edu/pubs/pubdetail.asp?CallNumber=ISWS+SR+2005%2D01].

    • Search Google Scholar
    • Export Citation
  • Liang, X-Z., , Choi H. , , Kunkel K. E. , , Dai Y. , , Joseph E. , , Wang J. X. L. , , and Kumar P. , 2005c: Surface boundary conditions for mesoscale regional climate models. Earth Interactions, 9 .[Available online at http://EarthInteractions.org].

    • Search Google Scholar
    • Export Citation
  • Liang, X-Z., , Xu M. , , Zhu J. , , Kunkel K. E. , , and Wang J. X. L. , 2005d: Development of the regional Climate-Weather Research and Forecasting Model (CWRF): Treatment of topography. Proc. Joint WRF/MM5 User’s Workshop, Boulder, CO, NCAR, 9.3.

    • Search Google Scholar
    • Export Citation
  • Liang, X-Z., and Coauthors, 2006: Development of the regional Climate-Weather Research and Forecasting model (CWRF): Treatment of subgrid topography effects. Proc. Seventh WRF User’s Workshop, Boulder, CO, NCAR, 7.3.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., , and Pan H. , 1984: A two-layer model of soil hydrology. Bound.-Layer Meteor., 29 , 120.

  • Mesinger, F., and Coauthors, 2006: North American regional reanalysis. Bull. Amer. Meteor. Soc., 87 , 343360.

  • Miller, D. A., , and White R. A. , 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interactions, 2 .[Available online at http://EarthInteractions.org].

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., , and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I — A discussion of principles. J. Hydrol., 10 , 282290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G-Y., , and Yang Z-L. , 2003: The versatile integrator of surface atmospheric processes: Part 2: Evaluation of three topography-based runoff schemes. Global Planet. Change, 38 , 191208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G-Y., , and Yang Z-L. , 2006: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J. Hydrometeor., 7 , 937952.

  • Niu, G-Y., , Yang Z-L. , , Dickinson R. E. , , and Gulden L. E. , 2005: A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res., 110 , D21106. doi:10.1029/2005JD006111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G-Y., , Yang Z-L. , , Dickinson R. E. , , Gulden L. E. , , and Su H. , 2007: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res., 112 , D07103. doi:10.1029/2006JD007522.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113 , G01021. doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Qian, T., , Dai A. , , Trenberth K. E. , , and Oleson K. W. , 2006: Simulation of global land surface conditions from 1948 to 2004: Part I: Forcing data and evaluations. J. Hydrometeor., 7 , 953975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salvucci, G. D., , and Entekhabi D. , 1994: Equivalent steady soil moisture profile and time compression approximation in water balance modeling. Water Resour. Res., 30 , 27372750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salvucci, G. D., , and Entekhabi D. , 1995: Hillslope and climatic controls on hydrologic fluxes. Water Resour. Res., 31 , 17251740.

  • Sellers, P. J., , Los S. O. , , Tucker C. J. , , Justice C. O. , , Dazlich D. A. , , Collatz G. J. , , and Randall D. A. , 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Climate, 9 , 706737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivapalan, M., , Beven K. J. , , and Wood E. F. , 1987: On hydrologic similarity 2. A scaled model of storm runoff production. Water Resour. Res., 23 , 22662278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stieglitz, M., , Rind D. , , Famiglietti J. , , and Rosenzweig C. , 1997: An efficient approach to modeling the topographic control of surface hydrology for regional modeling. J. Climate, 10 , 118137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warrach, K., , Stieglitz M. , , Mengelkamp H-T. , , and Raschke E. , 2002: Advantages of a topograpically controlled runoff simulation in a soil–vegetation–atmosphere transfer model. J. Hydrometeor., 3 , 131148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, R. A., , and Sivapalan M. , 1997: A connection between topographically driven runoff generation and network structure. Water Resour. Res., 33 , 29392950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., , Sellers P. J. , , Kinter J. L. III, , and Shukla J. , 1991: A Simplified Biosphere Model for global climate studies. J. Climate, 4 , 345364.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 32 7
PDF Downloads 18 18 2

Improved Terrestrial Hydrologic Representation in Mesoscale Land Surface Models

View More View Less
  • 1 Yeungnam University, Daegu, South Korea
  • | 2 Illinois State Water Survey, University of Illinois at Urbana–Champaign, Champaign, Illinois
© Get Permissions
Restricted access

Abstract

This study addresses several deficiencies in the existing formulations for terrestrial hydrologic processes in the Common Land Model (CLM) and presents improved solutions, focusing on runoff prediction. In particular, this paper has 1) incorporated a realistic geographic distribution of bedrock depth to improve estimates of the actual soil water capacity; 2) replaced an equilibrium approximation with a dynamic prediction of the water table to produce more reasonable variations of the saturated zone depth; 3) used an exponential decay function with soil depth for the saturated hydraulic conductivity to consider the effect of macropores near the ground surface; 4) formulated an effective hydraulic conductivity of the liquid part at the frozen soil interface and imposed a maximum surface infiltration limit to eliminate numerically generated negative or excessive soil moisture solution; and 5) examined an additional contribution to subsurface runoff from saturation lateral runoff or baseflow controlled by topography. To assess the performance of these modifications, runoff results from a set of offline simulations are validated at a catchment-scaled study domain around the Ohio Valley region. Together, these new schemes enable the CLM to capture well the major characteristics of the observed total runoff variations. The improvement is especially significant at peak discharges under high flow conditions.

Corresponding author address: Dr. Xin-Zhong Liang, Illinois State Water Survey, University of Illinois at Urbana–Champaign, 2204 Griffith Dr., Champaign, IL 61820–7495. Email: xliang@illinois.edu

Abstract

This study addresses several deficiencies in the existing formulations for terrestrial hydrologic processes in the Common Land Model (CLM) and presents improved solutions, focusing on runoff prediction. In particular, this paper has 1) incorporated a realistic geographic distribution of bedrock depth to improve estimates of the actual soil water capacity; 2) replaced an equilibrium approximation with a dynamic prediction of the water table to produce more reasonable variations of the saturated zone depth; 3) used an exponential decay function with soil depth for the saturated hydraulic conductivity to consider the effect of macropores near the ground surface; 4) formulated an effective hydraulic conductivity of the liquid part at the frozen soil interface and imposed a maximum surface infiltration limit to eliminate numerically generated negative or excessive soil moisture solution; and 5) examined an additional contribution to subsurface runoff from saturation lateral runoff or baseflow controlled by topography. To assess the performance of these modifications, runoff results from a set of offline simulations are validated at a catchment-scaled study domain around the Ohio Valley region. Together, these new schemes enable the CLM to capture well the major characteristics of the observed total runoff variations. The improvement is especially significant at peak discharges under high flow conditions.

Corresponding author address: Dr. Xin-Zhong Liang, Illinois State Water Survey, University of Illinois at Urbana–Champaign, 2204 Griffith Dr., Champaign, IL 61820–7495. Email: xliang@illinois.edu

Save