A Real-Time Algorithm for the Correction of Brightband Effects in Radar-Derived QPE

Jian Zhang NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jian Zhang in
Current site
Google Scholar
PubMed
Close
and
Youcun Qi Nanjing University of Information Science and Technology, Nanjing, China, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Youcun Qi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The bright band (BB) is a layer of enhanced reflectivity due to melting of aggregated snow and ice crystals. The locally high reflectivity causes significant overestimation in radar precipitation estimates if an appropriate correction is not applied. The main objective of the current study is to develop a method that automatically corrects for large errors due to BB effects in a real-time national radar quantitative precipitation estimation (QPE) product. An approach that combines the mean apparent vertical profile of reflectivity (VPR) computed from a volume scan of radar reflectivity observations and an idealized linear VPR model was used for computational efficiency. The methodology was tested for eight events from different regions and seasons in the United States. The VPR correction was found to be effective and robust in reducing overestimation errors in radar-derived QPE, and the corrected radar precipitation fields showed physically continuous distributions. The correction worked consistently well for radars in flat land regions because of the relatively uniform spatial distributions of the BB in those areas. For radars in mountainous regions, the performance of the correction is mixed because of limited radar visibility in addition to large spatial variations of the vertical precipitation structure due to underlying topography.

Corresponding author address: Jian Zhang, NSSL/WRDD, 120 David L. Boren Blvd., Norman, OK 73072. Email: jian.zhang@noaa.gov

This article included in the State of the Science of Precipitation special collection.

Abstract

The bright band (BB) is a layer of enhanced reflectivity due to melting of aggregated snow and ice crystals. The locally high reflectivity causes significant overestimation in radar precipitation estimates if an appropriate correction is not applied. The main objective of the current study is to develop a method that automatically corrects for large errors due to BB effects in a real-time national radar quantitative precipitation estimation (QPE) product. An approach that combines the mean apparent vertical profile of reflectivity (VPR) computed from a volume scan of radar reflectivity observations and an idealized linear VPR model was used for computational efficiency. The methodology was tested for eight events from different regions and seasons in the United States. The VPR correction was found to be effective and robust in reducing overestimation errors in radar-derived QPE, and the corrected radar precipitation fields showed physically continuous distributions. The correction worked consistently well for radars in flat land regions because of the relatively uniform spatial distributions of the BB in those areas. For radars in mountainous regions, the performance of the correction is mixed because of limited radar visibility in addition to large spatial variations of the vertical precipitation structure due to underlying topography.

Corresponding author address: Jian Zhang, NSSL/WRDD, 120 David L. Boren Blvd., Norman, OK 73072. Email: jian.zhang@noaa.gov

This article included in the State of the Science of Precipitation special collection.

Save
  • Andrieu, H., and Creutin J. D. , 1995: Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part I: Formulation. J. Appl. Meteor., 34 , 225239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, P. M., and Bemis A. C. , 1950: A quantitative study of the “bright band” in radar precipitation echoes. J. Meteor., 7 , 145151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellon, A., Lee G-W. , and Zawadzki I. , 2005: Error statistics of VPR corrections in stratiform precipitation. J. Appl. Meteor., 44 , 9981015.

  • Daly, C., Gibson W. P. , Taylor G. H. , Doggett M. K. , and Smith J. I. , 2007a: Observer bias in daily precipitation measurements at U.S. Cooperative network stations. Bull. Amer. Meteor. Soc., 88 , 899912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., Smith J. I. , and McKane R. , 2007b: High-resolution spatial modeling of daily weather elements for a catchment in the Oregon Cascade Mountains, United States. J. Appl. Meteor. Climatol., 46 , 15651586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiLuzio, M., Johnson G. L. , Daly C. , Eischeid J. K. , and Arnold J. G. , 2008: Constructing retrospective gridded daily precipitation and temperature datasets for the conterminous United States. J. Appl. Meteor. Climatol., 47 , 475497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., and Zawadzki I. , 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52 , 838851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., and Joss J. , 2002: Mesobeta profiles to extrapolate radar precipitation measurements above the Alps to the ground level. J. Appl. Meteor., 41 , 542557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., and Calvert C. , 2003: Automated detection of the bright band using WSR-88D data. Wea. Forecasting, 18 , 585599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., Jorgensen D. P. , Matrosov S. Y. , and Flaming Z. L. , 2009: Evaluation of incremental improvements to quantitative precipitation estimates in complex terrain. J. Hydrometeor., 10 , 15071520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greene, D. R., and Clark R. A. , 1972: Vertically integrated liquid water—A new analysis tool. Mon. Wea. Rev., 100 , 548552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joss, J., and Lee R. , 1995: The application of radar-gauge comparisons to operational precipitation profile corrections. J. Appl. Meteor., 34 , 26122630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitchen, M., 1997: Towards improved radar estimates of surface precipitation at long range. Quart. J. Roy. Meteor. Soc., 123 , 145163.

  • Kitchen, M., Brown R. , and Davies A. G. , 1994: Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Quart. J. Roy. Meteor. Soc., 120 , 12311254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koistinen, J., 1991: Operational correction of radar rainfall errors due to the vertical reflectivity profile. Preprints, 25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 91–94.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R. M., and Atlas D. , 1963: Doppler fall speed and particle growth in stratiform precipitation. Preprints, 10th Radar Meteorology Conf., Washington, DC, Amer. Meteor. Soc., 297–302.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Clark K. A. , and Kingsmill D. E. , 2007: A polarimetric radar approach to identify rain, melting-layer, and snow regions for applying corrections to vertical profiles of reflectivity. J. Appl. Meteor. Climatol., 46 , 154166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/OFCM, 2005: Surface weather observations and reports. Federal Meteorological Handbook 11, FCM-H1-2005, NOAA/Office of the Federal Coordinator for Meteorological Services and Supporting Research, Washington, DC, 104 pp. [Available online at http://www.ofcm.gov/homepage/text/pubs.htm].

    • Search Google Scholar
    • Export Citation
  • Pellarin, T., Delrieu G. , Saulnier G-M. , Andrieu H. , Vignal B. , and Creutin J-D. , 2002: Hydrologic visibility of weather radar systems operating in mountainous regions: Case study for the Ardèche catchment (France). J. Hydrometeor., 3 , 539555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryde, J. W., 1947: The attenuation and radar echoes produced at centimeter wavelengths by various meteorological phenomena. Meteorological Factors in Radio Wave Propagation, The Physical Society, 169–188.

    • Search Google Scholar
    • Export Citation
  • Sánchez-Diezma, R., Zawadzki I. , and Sempere-Torres D. , 2000: Identification of the bright band through the analysis of volumetric radar data. J. Geophys. Res., 105 , 22252236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, D-J., Breidenbach J. , Fulton R. , Miller D. , and O’Bannon T. , 2000: Real-time adjustment of range-dependent biases in WSR-88D rainfall estimates due to nonuniform vertical profile of reflectivity. J. Hydrometeor., 1 , 222240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, D-J., Kondragunta C. R. , Howard K. , Vasiloff S. V. , and Zhang J. , 2005: The national mosaic and multisensor QPE (NMQ) project-status and plans for a community testbed for high-resolution multisensor quantitative precipitation estimation (QPE) over the United States. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., P1.3.

    • Search Google Scholar
    • Export Citation
  • Smyth, T. J., and Illingworth A. J. , 1998: Radar estimates of rainfall rates at the ground in bright band and non-bright band events. Quart. J. Roy. Meteor. Soc., 124 , 24172434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., Houze R. A. Jr., and Yuter S. E. , 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34 , 19782007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tabary, P., 2007: The new French operational radar rainfall product. Part I: Methodology. Wea. Forecasting, 22 , 393408.

  • Tabary, P., Desplats J. , Do Khac K. , Eideliman F. , Gueguen C. , and Heinrich J-C. , 2007: The new French operational radar rainfall product. Part II: Validation. Wea. Forecasting, 22 , 409427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vasiloff, S., and Coauthors, 2007: Q2: Next generation QPE and very short-term QPF. Bull. Amer. Meteor. Soc., 88 , 18991911.

  • Vignal, B., and Krajewski W. F. , 2001: Large-sample evaluation of two methods to correct range-dependent error for WSR-88D rainfall estimates. J. Hydrometeor., 2 , 490504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vignal, B., Andrieu H. , and Creutin J. D. , 1999: Identification of vertical profiles of reflectivity from volume-scan radar data. J. Appl. Meteor., 38 , 12141228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vignal, B., Galli G. , Joss J. , and Germann U. , 2000: Three methods to determine profiles of reflectivity from volumetric radar data to correct precipitation estimates. J. Appl. Meteor., 39 , 17151726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westrick, K. J., Mass C. F. , and Colle B. A. , 1999: The limitations of the WSR-88D radar network for quantitative precipitation measurement over coastal western United States. Bull. Amer. Meteor. Soc., 80 , 22892298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wexler, R., and Atlas D. , 1956: Factors influencing radar echo intensities in the melting layer. Quart. J. Roy. Meteor. Soc., 82 , 349351.

  • Xu, X., Howard K. , and Zhang J. , 2008: An automated radar technique for the identification of tropical precipitation. J. Hydrometeor., 9 , 885902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., Langston C. , and Howard K. , 2008: Bright band identification based on vertical profiles of reflectivity from the WSR-88D. J. Atmos. Oceanic Technol., 25 , 18591872.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1271 566 73
PDF Downloads 764 229 25