Parameterization of Lakes and Wetlands for Energy and Water Balance Studies in the Great Lakes Region

Vimal Mishra Agricultural and Biological Engineering, and Purdue Climate Change Research Center, Purdue University, West Lafayette, Indiana

Search for other papers by Vimal Mishra in
Current site
Google Scholar
PubMed
Close
,
Keith A. Cherkauer Agricultural and Biological Engineering, and Purdue Climate Change Research Center, Purdue University, West Lafayette, Indiana

Search for other papers by Keith A. Cherkauer in
Current site
Google Scholar
PubMed
Close
, and
Laura C. Bowling Department of Agronomy, and Purdue Climate Change Research Center, Purdue University, West Lafayette, Indiana

Search for other papers by Laura C. Bowling in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Lakes and wetlands are prevalent around the Great Lakes and play an important role in the regional water and energy cycle. However, simulating their impacts on regional-scale hydrology is still a major challenge and not widely attempted. In the present study, the Variable Infiltration Capacity (VIC) model is applied and evaluated with a physically based lake and wetland algorithm, which can simulate the effect of lakes and wetlands on the grid cell energy and water balance. The VIC model was calibrated at 10 U.S. Geological Survey (USGS) stream gauging stations against daily streamflow records for the period of 1985–95, and successfully evaluated for the period of 1996–2005. Single-grid sensitivity experiments showed that runoff, baseflow, and inundation area were sensitive to the lake model parameters. Simulations were also conducted to analyze the spatial and temporal variability of inundation area for the period of 1985–2005. Results indicated that water and energy fluxes were substantially affected when lakes and wetlands were included in model simulations. Domain-averaged annual mean evapotranspiration (ET) was increased by 5% while annual mean total runoff was decreased by 12% with lakes and wetlands. Latent heat flux increased while sensible heat flux decreased because of the inclusion of lakes and wetlands.

Corresponding author address: Vimal Mishra, 225 South University Street, West Lafayette, IN 47907. Email: vmishra@purdue.edu

Abstract

Lakes and wetlands are prevalent around the Great Lakes and play an important role in the regional water and energy cycle. However, simulating their impacts on regional-scale hydrology is still a major challenge and not widely attempted. In the present study, the Variable Infiltration Capacity (VIC) model is applied and evaluated with a physically based lake and wetland algorithm, which can simulate the effect of lakes and wetlands on the grid cell energy and water balance. The VIC model was calibrated at 10 U.S. Geological Survey (USGS) stream gauging stations against daily streamflow records for the period of 1985–95, and successfully evaluated for the period of 1996–2005. Single-grid sensitivity experiments showed that runoff, baseflow, and inundation area were sensitive to the lake model parameters. Simulations were also conducted to analyze the spatial and temporal variability of inundation area for the period of 1985–2005. Results indicated that water and energy fluxes were substantially affected when lakes and wetlands were included in model simulations. Domain-averaged annual mean evapotranspiration (ET) was increased by 5% while annual mean total runoff was decreased by 12% with lakes and wetlands. Latent heat flux increased while sensible heat flux decreased because of the inclusion of lakes and wetlands.

Corresponding author address: Vimal Mishra, 225 South University Street, West Lafayette, IN 47907. Email: vmishra@purdue.edu

Save
  • Benson, L. V., and Thompson R. S. , 1987: Lake-level variation in the Lahontan Basin for the past 50,000 years. Quat. Res., 28 , 6985.

  • Beven, K., 2006: A manifesto for the equifinality thesis. J. Hydrol., 320 , 1836.

  • Beven, K., and Freer J. , 2001: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol., 249 , 1129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1995: Sensitivity of a GCM simulation to inclusion of inland water surfaces. J. Climate, 8 , 26912704.

  • Bousquet, P., and Coauthors, 2006: Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443 , 439443.

  • Bowling, L. C., and Lettenmaier D. P. , 2010: Modeling the effects of lakes and wetlands on the water balance of arctic environments. J. Hydrometeor., 11 , 276295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., and Coauthors, 2003a: Simulation of high-latitude hydrologic processes in the Torne–Kalix basin: PILPS Phase 2(e) 1: Experiment description and summary intercomparisons. Global Planet. Change, 38 , 130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., Kane D. L. , Gieck R. E. , Hinzman L. D. , and Lettenmaier D. P. , 2003b: The role of surface storage in a low-gradient arctic watershed. Water Resour. Res., 39 , 1087. doi:10.1029/2002WR001466.

    • Search Google Scholar
    • Export Citation
  • Cardille, J., Coe M. T. , and Vano J. A. , 2004: Impacts of climate variation and catchment area on water balance and lake hydrologic type in groundwater-dominated systems: A generic lake model. Earth Interactions, 8 .[Available online at http://EarthInteractions.org].

    • Search Google Scholar
    • Export Citation
  • Cardille, J., Carpenter S. R. , Coe M. T. , Foley J. A. , Hanson P. C. , Turner M. G. , and Vano J. A. , 2007: Carbon and water cycling in lake-rich landscapes: Landscape connections, lake hydrology, and biogeochemistry. J. Geophys. Res., 112 , G02031. doi:10.1029/2006JG000200.

    • Search Google Scholar
    • Export Citation
  • Carpenter, S. R., 1984: Complex Interactions in Lake Communities. Springer, 283 pp.

  • Cherkauer, K. A., and Lettenmaier D. P. , 1999: Hydrologic effects of frozen soils in the upper Mississipi River basin. J. Geophys. Res., 104D , 1959919610.

    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., Bowling L. C. , and Lettenmaier D. P. , 2003: Variable infiltration capacity cold land process model updates. Global Planet. Change, 38 , 151159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coe, M. T., 1998: A linked global model of terrestrial hydrologic processes: Simulation of modern rivers, lakes, and wetlands. J. Geophys. Res., 103 , (D8). 88858899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coe, M. T., and Bonan G. B. , 1997: Feedbacks between climate and surface water in northern Africa during the middle Holocene. J. Geophys. Res., 102 , (D10). 1108711101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coe, M. T., Costa M. H. , Botta A. , and Birkett C. , 2002: Long-term simulations of discharge and floods in the Amazon Basin. J. Geophys. Res., 107 , (D20). 8044. doi:10.1029/2001JD000740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delire, C., Foley J. A. , and Thompson S. , 2004: Long-term variability in a coupled atmosphere–biosphere model. J. Climate, 17 , 39473959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downing, J. A., and Coauthors, 2006: The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr., 51 , 23882397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eaton, A. K., Rouse W. R. , Lafleur P. M. , Marsh P. , and Blanken P. D. , 2001: Surface energy balance of the western and central Canadian subarctic: Variations in the energy balance among five major terrain types. J. Climate, 14 , 36923703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finlayson, C. M., Davidson N. C. , Spiers A. G. , and Stevenson N. J. , 1999: Global wetland inventory: Current status and future priorities. Mar. Freshwater Res., 50 , 717727.

    • Search Google Scholar
    • Export Citation
  • Gosselink, G. J., and Mitsch J. W. , 2000: Wetlands. John Wiley, 539 pp.

  • Hamlet, A. F., and Lettenmaier D. P. , 2005: Production of temporarily consistent and gridded precipitation and temperature fields for the continental United States. J. Hydrometeor., 6 , 330336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., 1991: Simulation of lake ice and its effect on the late-Pleistocene evaporation rate of Lake Lahontan. Climate Dyn., 6 , 4348.

  • Hostetler, S. W., and Bartlein P. J. , 1990: Simulation of lake evaporation with application of modeling lake level variations of Harney-Malheur Lake, Oregon. Water Resour. Res., 26 , 26032612.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., Bates G. T. , and Giorgi F. , 1993: Interactive coupling of a lake thermal model with a regional climate model. J. Geophys. Res., 98D , 50455057.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP–NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Krinner, G., 2003: Impact of lakes and wetlands on boreal climate. J. Geophys. Res., 108 , 4520. doi:10.1029/2002JD002597.

  • Lenters, J. D., Kratz T. K. , and Bowser C. J. , 2005: Effects of climate variability on lake evaporation: Results from a long-term energy budget study of Sparkling Lake, northern Wisconsin (USA). J. Hydrol., 308 , 168195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99D , 1441514428.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , and Wood E. F. , 1996: One-dimensional statistical dynamic representation of subgrid variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res., 101D , 2140321422.

    • Search Google Scholar
    • Export Citation
  • Lofgren, B. M., 1997: Simulated effects of idealized Laurentian Great Lakes on regional and large-scale climate. J. Climate, 10 , 28472858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, D., Raschke E. , Nijssen B. , and Lettenmaier D. P. , 1998: Regional scale hydrology: I Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J., 43 , 131141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, D., and Cherkauer K. A. , 2009: Impacts of land-use change on hydrologic responses in the Great Lakes region. J. Hydrol., 374 , 7182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, E., and Fung I. , 1987: Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources. Global Biogeochem. Cycles, 1 , 6186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Wood A. W. , Adam J. C. , Lettenmaier D. P. , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15 , 32373251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meybeck, M., 1995: Global distribution of lakes. Physics and Chemistry of Lakes, A. Lerman, D. M. Imboden, and J. R. Gat, Eds., Springer-Verlag, 1–35.

    • Search Google Scholar
    • Export Citation
  • Miller, D. A., and White R. A. , 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interactions, 2 .[Available online at http://EarthInteractions.org].

    • Search Google Scholar
    • Export Citation
  • Mishra, V., Cherkauer K. A. , and Shukla S. , 2010: Assessment of drought due to historic climate variability and projected future climate change in the midwestern United States. J. Hydrometeor., 11 , 4668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109 , D07S90. doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., Ramakrishna R. , Nemani R. , and Running S. W. , 1997: Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Trans. Geosci. Remote Sens., 35 , 13801393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I–A discussion of principles. J. Hydrol., 10 , 282290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijssen, B., O’Donnell G. M. , Hamlet A. F. , and Lettenmaier D. P. , 2001: Hydrologic sensitivity of global rivers to climate change. Climatic Change, 50 , 143175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijssen, B., and Coauthors, 2003: Simulation of high latitude hydrological processes in the Torne–Kalix basin: PILPS Phase (2e) 2: Comparison of model results with observations. Global Planet. Change, 38 , 3153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niyogi, D. S., Raman S. , and Alapaty K. , 1999: Uncertainty in the specification of surface characteristics, Part ii: Hierarchy of interaction-explicit statistical analysis. Bound.-Layer Meteor., 91 , 341366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papa, F., Prigent C. , and Rossow W. B. , 2007: Ob’ River flood inundations from satellite observations: A relationship with winter snow parameters and river runoff. J. Geophys. Res., 112 , D18103. doi:10.1029/2007JD008451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patterson, J. C., and Hamblin P. F. , 1988: Thermal simulation of a lake with winter ice cover. Limnol. Oceanogr., 33 , 323338.

  • Pitman, A. J., 1991: A simple parameterization of sub-grid scale open water for climate models. Climate Dyn., 6 , 99112.

  • Prigent, C., Papa F. , Aires F. , Rossow W. B. , and Matthews E. , 2007: Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J. Geophys. Res., 112 , D12107. doi:10.1029/2006JD007847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouse, W. R., Eaton A. K. , Petrone R. M. , Boudreau L. D. , Marsh P. , and Griffis T. J. , 2003: Seasonality in the surface energy balance of tundra in the lower Mackenzie River basin. J. Hydrometeor., 4 , 673679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouse, W. R., Binyamin J. , Blanken P. D. , Bussières N. , Duguay C. R. , Oswald C. J. , Schertzer W. M. , and Spence C. , 2008: The influence of lakes on the regional energy and water balance of the central Mackenzie River Basin. Atmospheric Dynamics, M.-k. Woo, Ed., Cold Region Atmospheric and Hydrologic Studies: The Mackenzie GEWEX Experience, Vol. 1, Springer, 309–325.

    • Search Google Scholar
    • Export Citation
  • Saurral, R. I., Barros V. R. , and Lettenmaier D. P. , 2008: Land use impact on the Uruguay River discharge. Geophys. Res. Lett., 35 , L12401. doi:10.1029/2008GL033707.

    • Search Google Scholar
    • Export Citation
  • Sinha, T., Cherkauer K. A. , and Mishra V. , 2010: Impacts of historic climate variability on seasonal soil frost in the Midwestern United States. J. Hydrometeor., 11 , 229252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, E. E., Sloan L. C. , Hostetler S. , and Giorgi F. , 1999: Simulating the water balance of the Aral Sea with a coupled regional climate-lake model. J. Geophys. Res., 104 , (D6). 65836602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, U., and Alpert P. , 1993: Factor separation in numerical simulations. J. Atmos. Sci., 50 , 21072115.

  • Street-Perrott, A. F., and Harrison S. P. , 1985: Lake levels and climate reconstruction. Palaeoclimatic Analysis and Modelling, A. D. Hecht, Ed., John Wiley, 291–340.

    • Search Google Scholar
    • Export Citation
  • Su, F., Adam J. C. , Bowling L. C. , and Lettenmaier D. P. , 2005: Streamflow simulations of the terrestrial Arctic domain. J. Geophys. Res., 110 , D08112. doi:10.1029/2004JD005518.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., and Running S. W. , 1999: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteor., 93 , 211228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troy, T. J., Wood E. F. , and Sheffield J. , 2008: An efficient calibration method for continental-scale land surface modeling. Water Resour. Res., 44 , W09411. doi:10.1029/2007WR006513.

    • Search Google Scholar
    • Export Citation
  • Twine, T. E., and Coauthors, 2000: Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteor., 103 , 279300.

  • Vano, J. A., Foley J. A. , Kucharik C. J. , and Coe M. T. , 2006: Evaluating the seasonal and interannual variations in water balance in northern Wisconsin using a land surface model. J. Geophys. Res., 111 , G02025. doi:10.1029/2005JG000112.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., Lettenmaier D. P. , and Zatarian V. G. , 1992: A land surface hydrology parameterization with sub-grid variability for general circulation models. J. Geophys. Res., 97D , 27172728.

    • Search Google Scholar
    • Export Citation
  • Wu, K., and Johnston C. A. , 2008: Hydrologic comparison between forested and a wetland/lake dominated watershed using SWAT. Hydrol. Process., 22 , 14311442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., Robinson D. , Zhao Y. , Estilow T. , and Ye B. , 2003: Streamflow response to seasonal snow cover extent changes in large Siberian watersheds. J. Geophys. Res., 108 , 4578. doi:10.1029/2002JD003149.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 387 100 4
PDF Downloads 328 68 2