Scale Dependence of Radar Rainfall Uncertainty: Initial Evaluation of NEXRAD’s New Super-Resolution Data for Hydrologic Applications

Bong-Chul Seo IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Bong-Chul Seo in
Current site
Google Scholar
PubMed
Close
and
Witold F. Krajewski IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Witold F. Krajewski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study explores the scale effects of radar rainfall accumulation fields generated using the new super-resolution level II radar reflectivity data acquired by the Next Generation Weather Radar (NEXRAD) network of the Weather Surveillance Radar-1988 Doppler (WSR-88D) weather radars. Eleven months (May 2008–August 2009, exclusive of winter months) of high-density rain gauge network data are used to describe the uncertainty structure of radar rainfall and rain gauge representativeness with respect to five spatial scales (0.5, 1, 2, 4, and 8 km). While both uncertainties of gauge representativeness and radar rainfall show simple scaling behavior, the uncertainty of radar rainfall is characterized by an almost 3 times greater standard error at higher temporal and spatial resolutions (15 min and 0.5 km) than at lower resolutions (1 h and 8 km). These results may have implications for error propagation through distributed hydrologic models that require high-resolution rainfall input. Another interesting result of the study is that uncertainty obtained by averaging rainfall products produced from the super-resolution reflectivity data is slightly lower at smaller scales than the uncertainty of the corresponding resolution products produced using averaged (recombined) reflectivity data.

Corresponding author address: Witold F. Krajewski, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242. Email: witold-krajewski@uiowa.edu

Abstract

This study explores the scale effects of radar rainfall accumulation fields generated using the new super-resolution level II radar reflectivity data acquired by the Next Generation Weather Radar (NEXRAD) network of the Weather Surveillance Radar-1988 Doppler (WSR-88D) weather radars. Eleven months (May 2008–August 2009, exclusive of winter months) of high-density rain gauge network data are used to describe the uncertainty structure of radar rainfall and rain gauge representativeness with respect to five spatial scales (0.5, 1, 2, 4, and 8 km). While both uncertainties of gauge representativeness and radar rainfall show simple scaling behavior, the uncertainty of radar rainfall is characterized by an almost 3 times greater standard error at higher temporal and spatial resolutions (15 min and 0.5 km) than at lower resolutions (1 h and 8 km). These results may have implications for error propagation through distributed hydrologic models that require high-resolution rainfall input. Another interesting result of the study is that uncertainty obtained by averaging rainfall products produced from the super-resolution reflectivity data is slightly lower at smaller scales than the uncertainty of the corresponding resolution products produced using averaged (recombined) reflectivity data.

Corresponding author address: Witold F. Krajewski, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242. Email: witold-krajewski@uiowa.edu

Save
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20 , 752759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., and Krajewski W. F. , 1999: On the estimation of radar rainfall error variance. Adv. Water Resour., 22 , 585595.

  • Ciach, G. J., and Krajewski W. F. , 2006: Analysis and modeling of spatial correlation structure of small-scale rainfall in Central Oklahoma. Adv. Water Resour., 29 , 14501463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., Habib E. , and Krajewski W. F. , 2003: Zero-covariance hypothesis in the Error Variance Separation method of radar rainfall verification. Adv. Water Resour., 26 , 673680.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., Krajewski W. F. , and Villarini G. , 2007: Product-error-driven uncertainty model for probabilistic quantitative precipitation estimation with NEXRAD data. J. Hydrometeor., 8 , 13251347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressie, N. A. C., 1993: Statistics for Spatial Data. John Wiley and Sons, 900 pp.

  • Fulton, R. A., Breidenbach J. P. , Seo D-J. , Miller D. A. , and O’Bannon T. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13 , 377395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib, E., Krajewski W. F. , and Ciach G. J. , 2001: Estimation of rainfall interstation correlation. J. Hydrometeor., 2 , 621629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Istok, M., and Coauthors, 2009: WSR-88D dual polarization initial operational capabilities. Preprints, 25th Conf. on International Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 15.5. [Available online at http://ams.confex.com/ams/pdfpapers/148927.pdf].

    • Search Google Scholar
    • Export Citation
  • Journel, A. G., and Huijbregts Ch J. , 1978: Mining Geostatistics. Academic Press, 600 pp.

  • Krajewski, W. F., Ciach G. J. , McCollum J. R. , and Bacotiu C. , 2000: Initial validation of the Global Precipitatioin Climatology Project over the United States. J. Appl. Meteor., 39 , 10711086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Coauthors, 2010: Towards better utilization of NEXRAD data in hydrology: An overview of Hydro-NEXRAD. J. Hydroinf., doi:10.2166/hydro.2010.056, in press.

    • Search Google Scholar
    • Export Citation
  • Kruger, A., Krajewski W. F. , and Domaszczynski P. , 2010: Hydro-NEXRAD: Metadata computation and use. J. Hydroinf., doi:10.2166/hydro.2010.057, in press.

    • Search Google Scholar
    • Export Citation
  • Moore, S. D., 2003: The Basic Practice of Statistics. 3rd ed. W. H. Freeman and Company, 440–444 pp.

  • Morrissey, M. L., Maliekal J. A. , Greene J. S. , and Wang J. , 1995: The uncertainty of simple spatial averages using rain gauge networks. Water Resour. Res., 31 , 20112017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, S. M., and Maidment D. R. , 1999: Coordinate transformations for using NEXRAD data in GIS-based hydrologic modeling. J. Hydrol. Eng., 4 , 174182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schabenberger, O., and Gotway C. A. , 2005: Statistical Methods for Spatial Data Analysis. Statistical Science Series, Chapman & Hall/CRC, 488 pp.

    • Search Google Scholar
    • Export Citation
  • Seo, B-C., Krajewski W. F. , Kruger A. , Domaszczynski P. , Smith J. A. , and Steiner M. , 2010: Radar-rainfall estimation algorithms of Hydro-NEXRAD. J. Hydroinf., in press.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Seo D-J. , Baeck M. L. , and Hudlow M. D. , 1996: An intercomparison study of NEXRAD precipitation estimates. Water Resour. Res., 32 , 20352045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stedinger, J. R., 1981: Estimating correlations in multivariate streamflow models. Water Resour. Res., 17 , 200208.

  • Steiner, M., and Smith J. A. , 2002: Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data. J. Atmos. Oceanic Technol., 19 , 673686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, S. M., and Curtis C. D. , 2007: Initial implementation of super-resolution data on the NEXRAD network. Preprints, 23rd Conf. on International Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, San Antonio, TX, Amer. Meteor. Soc., 5B.10. [Available online at http://ams.confex.com/ams/87ANNUAL/techprogram/paper_116240.htm].

    • Search Google Scholar
    • Export Citation
  • Vasiloff, S. V., and Coauthors, 2007: Improving QPE and very short-term QPF: An initiative for a community-wide integrated approach. Bull. Amer. Meteor. Soc., 88 , 18991911.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 598 240 23
PDF Downloads 183 32 0