• Alpert, P., , and Shafir H. , 1989: Mesoγ-scale distribution of orographic precipitation: Numerical study and comparison with precipitation derived from radar measurements. J. Appl. Meteor., 28 , 11051117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., , and Lettenmaier D. P. , 1993: Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas. Mon. Wea. Rev., 121 , 11951214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., , and Lettenmaier D. P. , 1994: Incorporation of an evaporative cooling scheme into a dynamic model of orographic precipitation. Mon. Wea. Rev., 122 , 27772783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barstad, I., , and Smith R. B. , 2005: Evaluation of an orographic precipitation model. J. Hydrometeor., 6 , 8599.

  • Barstad, I., , Grabowski W. W. , , and Smolarkiewicz P. K. , 2007: Characteristics of large-scale orographic precipitation: Evaluation of linear model in idealized problems. J. Hydrol., 340 , 7890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basist, A., , Bell G. D. , , and Meentmeyer V. , 1994: Statistical relationships between topography and precipitation patterns. J. Climate, 7 , 13051315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61 , 588606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressman, G., 1959: An operational objective analysis system. Mon. Wea. Rev., 87 , 367374.

  • Crochet, P., , Jóhannesson T. , , Jónsson T. , , Sigurdsson O. , , Björnsson H. , , Pálsson F. , , and Barstad I. , 2007: Estimating the spatial distribution of precipitation in Iceland using a linear model of orographic precipitation. J. Hydrometeor., 8 , 12851306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., , Neilson R. P. , , and Phillips D. L. , 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33 , 140158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drogue, G., , Humbert J. , , Deraisme J. , , Mahr N. , , and Freslon N. , 2002: A statistical-topographic model using an omnidirectional parameterization of the relief for mapping orographic rainfall. Int. J. Climatol., 22 , 599613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faulkner, D. S., , and Prudhomme C. , 1998: Mapping an index of extreme rainfall across the UK. Hydrol. Earth Syst. Sci., 2 , 183194.

  • Goovaerts, P., 2000: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol., 228 , 113129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, H., , Wilson J. L. , , and Makhnin O. , 2005: Geostatistical mapping of mountain precipitation incorporating autosearched effects of terrain and climatic characteristics. J. Hydrometeor., 6 , 10181031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haltiner, G. J., , and Williams R. T. , 1980: Numerical Prediction and Dynamic Meteorology. John Wiley and Sons, 477 pp.

  • Hannesen, R., 1998: Analyse konvektiver Niederschlagssysteme mit einem C-Band Dopplerradar in orographisch gegliedertem Gelände. Ph.D. thesis, University of Karlsruhe, 119 pp.

  • Hevesi, J. A., , Istok J. D. , , and Flint A. L. , 1992: Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: Structural analysis. J. Appl. Meteor., 31 , 661676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55A , 301316.

  • Jiang, Q., , and Smith R. B. , 2003: Cloud timescales and orographic precipitation. J. Atmos. Sci., 60 , 15431559.

  • Kilsby, C. G., , Cowpertwait P. S. P. , , O’Connell P. E. , , and Jones P. D. , 1998: Predicting rainfall statistics in England and Wales using atmospheric circulation variables. Int. J. Climatol., 18 , 523539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., , and Smith R. B. , 2008: Temperature and moist-stability effects on midlatitude orographic precipitation. Quart. J. Roy. Meteor. Soc., 134 , 11831199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunz, M., , and Kottmeier C. , 2006a: Orographic enhancement of precipitation over low mountain ranges. Part I: Model formulation and idealized simulations. J. Appl. Meteor. Climatol., 45 , 10251040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunz, M., , and Kottmeier C. , 2006b: Orographic enhancement of precipitation over low mountain ranges. Part II: Simulation of heavy precipitation events over southwest Germany. J. Appl. Meteor. Climatol., 45 , 10411055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lalas, D. P., , and Einaudi F. , 1974: On the correct use of the wet adiabatic lapse rate in the stability criteria of a saturated atmosphere. J. Appl. Meteor., 13 , 318324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , Ralph F. M. , , White A. B. , , Kingsmill D. E. , , and Persson P. O. G. , 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130 , 14681492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nurmi, P., 2003: Recommendations on the verification of local weather forecasts. ECMWF Tech. Memo. 430, 19 pp.

  • Rockel, B., , Will A. , , and Hense A. , 2008: The regional climate model COSMO-CLM (CCLM). Meteor. Z., 17 , 347348.

  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33 , 645671.

  • Simmons, A. J., , and Gibson J. K. , 2000: The ERA-40 project plan. ERA-40 Project Report Series 1, 63 pp.

  • Sinclair, M. R., 1994: A diagnostic model for estimating orographic precipitation. J. Appl. Meteor., 33 , 11631175.

  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230.

  • Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32 , 348364.

  • Smith, R. B., 1988: Linear theory of stratified flow past an isolated mountain in isosteric coordinates. J. Atmos. Sci., 45 , 38893896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Hydrostatic airflow over mountains. Advances in Geophysics, Vol. 31, Academic Press, 1–41.

  • Smith, R. B., , and Barstad I. , 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61 , 13771391.

  • Smith, R. B., , and Evans J. P. , 2007: Orographic precipitation and water vapor fractionation over the southern Andes. J. Hydrometeor., 8 , 319.

  • Smith, R. B., , Barstad I. , , and Bonneau L. , 2005: Orographic precipitation and Oregon’s climate transition. J. Atmos. Sci., 62 , 177191.

  • Thompson, C. S., , Sinclair M. R. , , and Gray W. R. , 1997: Estimation of long-term annual precipitation in a mountainous region from a diagnostic model. Int. J. Climatol., 17 , 9971007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 53 7
PDF Downloads 27 27 5

Characteristics of Large-Scale Orographic Precipitation in a Linear Perspective

View More View Less
  • 1 Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
© Get Permissions
Restricted access

Abstract

Simulations of orographic precipitation over the low mountain ranges of southwestern Germany and eastern France with two different physics-based linear precipitation models are presented. Both models are based on 3D airflow dynamics from linear theory and consider advection of condensed water and leeside drying. Sensitivity studies for idealized conditions and a real case study show that the amount and spatial distribution of orographic precipitation is strongly controlled by characteristic time scales for cloud and hydrometeor advection and background precipitation due to large-scale lifting. These parameters are estimated by adjusting the model results on a 2.5-km grid to observed precipitation patterns for a sample of 40 representative orography-dominated stratiform events (24 h) during a calibration period (1971–80). In general, the best results in terms of lowest rmse and bias are obtained for characteristic time scales of 1600 s and background precipitation of 0.4 mm h−1. Model simulations of a sample of 84 events during an application period (1981–2000) with fixed parameters demonstrate that both models are able to reproduce quantitatively precipitation patterns obtained from observations and reanalyses from a numerical model [Consortium for Small-scale Modeling (COSMO)]. Combining model results with observation data shows that heavy precipitations over mountains are restricted to situations with strong atmospheric forcings in terms of synoptic-scale lifting, horizontal wind speed, and moisture content.

Corresponding author address: Michael Kunz, Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76128 Karlsruhe, Germany. Email: michael.kunz@kit.edu

Abstract

Simulations of orographic precipitation over the low mountain ranges of southwestern Germany and eastern France with two different physics-based linear precipitation models are presented. Both models are based on 3D airflow dynamics from linear theory and consider advection of condensed water and leeside drying. Sensitivity studies for idealized conditions and a real case study show that the amount and spatial distribution of orographic precipitation is strongly controlled by characteristic time scales for cloud and hydrometeor advection and background precipitation due to large-scale lifting. These parameters are estimated by adjusting the model results on a 2.5-km grid to observed precipitation patterns for a sample of 40 representative orography-dominated stratiform events (24 h) during a calibration period (1971–80). In general, the best results in terms of lowest rmse and bias are obtained for characteristic time scales of 1600 s and background precipitation of 0.4 mm h−1. Model simulations of a sample of 84 events during an application period (1981–2000) with fixed parameters demonstrate that both models are able to reproduce quantitatively precipitation patterns obtained from observations and reanalyses from a numerical model [Consortium for Small-scale Modeling (COSMO)]. Combining model results with observation data shows that heavy precipitations over mountains are restricted to situations with strong atmospheric forcings in terms of synoptic-scale lifting, horizontal wind speed, and moisture content.

Corresponding author address: Michael Kunz, Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76128 Karlsruhe, Germany. Email: michael.kunz@kit.edu

Save