• Adam, J. C., , and Lettenmaier D. P. , 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108 , 4257. doi:10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., , and Christensen O. B. , 2007: A summary of the PRUDENCE model projections of changes in European climate during this century. Climatic Change, 81 , 730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csima, G., , and Horányi A. , 2008: Validation of the ALADIN-Climate regional climate model at the Hungarian Meteorological Service. Időjárás, 112 , 155177.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., and Coauthors, 2007: An intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections. Climatic Change, 81 , 5370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R., , Henderson-Sellers A. , , and Kennedy P. , 1993: Biosphere-Atmosphere Transfer Scheme (BATS) version 1 as coupled to the NCAR community climate model. NCAR Tech. Note NCAR/TN-387+STR, 72 pp.

    • Search Google Scholar
    • Export Citation
  • Gao, X., , Pal J. S. , , and Giorgi F. , 2006: Projected changes in mean and extreme precipitation over the Mediterranean region from high resolution double nested RCM simulations. Geophys. Res. Lett., 33 , L03706. doi:10.1029/2005GL024954.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2006: Climate change hot-spots. Geophys. Res. Lett., 33 , L08707. doi:10.1029/2006GL025734.

  • Giorgi, F., , and Mearns L. O. , 1999: Introduction to special section: Regional climate modeling revisited. J. Geophys. Res., 104 , 63356352.

  • Giorgi, F., , and Coppola E. , 2007: European climate-change oscillation (ECO). Geophys. Res. Lett., 34 , L21703. doi:10.1029/2007GL031223.

  • Giorgi, F., , Marinucci M. R. , , and Bates G. T. , 1993a: Development of a second-generation regional climate model (RegCM2). Part I: Boundary-layer and radiative transfer processes. Mon. Wea. Rev., 121 , 27942813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., , Marinucci M. R. , , Bates G. T. , , and De Canio G. , 1993b: Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121 , 28142832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121 , 764787.

  • Grell, G., , Dudhia J. , , and Stauffer D. R. , 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 121 pp.

    • Search Google Scholar
    • Export Citation
  • Halenka, T., 2007: On the assessment of climate change impacts in central and eastern Europe - EC FP6 Project CECILIA. Geophys. Res. Abstr., 9 , 10545. [Available online at http://meetings.copernicus.org/www.cosis.net/abstracts/EGU2007/10545/EGU2007-J-10545.pdf].

    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., , Hofstra N. , , Klein Tank A. M. G. , , Klok E. J. , , Jones P. D. , , and New M. , 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113 , D20119. doi:10.1029/2008JD010201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofstra, N., , Haylock M. , , New M. , , and Jones P. D. , 2009: Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J. Geophys. Res., 114 , D21101. doi:10.1029/2009JD011799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., , de Bruijn E. I. F. , , and Pan H-L. , 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118 , 15611575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, D., and Coauthors, 2007: An inter-comparison of regional climate models for Europe: Model performance in present-day climate. Climatic Change, 81 , 2153.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J., , Hack J. , , Bonan G. B. , , Boville B. , , Briegleb B. , , Williamson D. , , and Rasch P. , 1996: Description of NCAR community climate model (CCM3). NCAR Tech. Note NCAR/TN-420+STR, 152 pp.

    • Search Google Scholar
    • Export Citation
  • Marinucci, M. R., , Giorgi F. , , Beniston M. , , Wild M. , , Tschuck P. , , Ohmura A. , , and Bernasconi A. , 1995: High resolution simulations of January and July climate over the western Alpine region with a nested regional climate modeling system. Theor. Appl. Climatol., 51 , 119138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., , Carter T. R. , , Jones P. D. , , Hulme M. , , and New M. , 2004: A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Working Paper 55, 30 pp.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., , Small E. , , and Elthair E. , 2000: Simulation of regional scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res., 105 , 567594.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88 , 13951409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pardo, E., , Marín S. , , Sanchis V. , , and Ramos A. J. , 2005: Impact of relative humidity and temperature on visible fungal growth and OTA production of ochratoxigenic Aspergillus ochraceus isolates on grapes. Food Microbiol., 22 , 383389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Räisänen, J., 2002: CO2-induced changes in interannual temperature and precipitation variability in 19 CMIP2 experiments. J. Climate, 15 , 23952411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sansom, J., , and Renwick A. J. , 2007: Climate change scenarios for New Zealand rainfall. J. Appl. Meteor. Climatol., 46 , 573590.

  • Solomon, S., , Qin D. , , Manning M. , , Marquis M. , , Averyt K. , , Tignor M. M. B. , , Miller H. L. Jr., , and Chen Z. , Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Torma, C., , Bartholy J. , , Pongracz R. , , Barcza Z. , , Coppola E. , , and Giorgi F. , 2008: Adaptation and validation of the RegCM3 climate model for the Carpathian basin. Időjárás, 112 , 233247.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 91 91 13
PDF Downloads 40 40 7

Validation of a High-Resolution Version of the Regional Climate Model RegCM3 over the Carpathian Basin

View More View Less
  • 1 Department of Meteorology, Eötvös Loránd University, and Adaptation to Climate Change Research Group, HAS-BCU, Budapest, Hungary
  • | 2 Earth System Physics Section, Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
  • | 3 Department of Meteorology, Eötvös Loránd University, Budapest, Hungary
© Get Permissions
Restricted access

Abstract

This paper presents a validation study for a high-resolution version of the Regional Climate Model version 3 (RegCM3) over the Carpathian basin and its surroundings. The horizontal grid spacing of the model is 10 km—the highest reached by RegCM3. The ability of the model to capture temporal and spatial variability of temperature and precipitation over the region of interest is evaluated using metrics spanning a wide range of temporal (daily to climatology) and spatial (inner domain average to local) scales against different observational datasets. The simulated period is 1961–90. RegCM3 shows small temperature biases but a general overestimation of precipitation, especially in winter; although, this overestimate may be artificially enhanced by uncertainties in observations. The precipitation bias over the Hungarian territory, the authors’ main area of interest, is mostly less than 20%. The model captures well the observed late twentieth-century decadal-to-interannual and interseasonal variability. On short time scales, simulated daily temperature and precipitation show a high correlation with observations, with a correlation coefficient of 0.9 for temperature and 0.6 for precipitation. Comparison with two Hungarian station time series shows that the model performance does not degrade when going to the 10-km gridpoint scale. Finally, the model reproduces the spatial distribution of dry and wet spells over the region. Overall, it is assessed that this high-resolution version of RegCM3 is of sufficiently good quality to perform climate change experiments over the Carpathian region—and, in particular, the Hungarian territory—for application to impact and adaptation studies.

Corresponding author address: Csaba Torma, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary. Email: delivitez@nimbus.elte.hu

Abstract

This paper presents a validation study for a high-resolution version of the Regional Climate Model version 3 (RegCM3) over the Carpathian basin and its surroundings. The horizontal grid spacing of the model is 10 km—the highest reached by RegCM3. The ability of the model to capture temporal and spatial variability of temperature and precipitation over the region of interest is evaluated using metrics spanning a wide range of temporal (daily to climatology) and spatial (inner domain average to local) scales against different observational datasets. The simulated period is 1961–90. RegCM3 shows small temperature biases but a general overestimation of precipitation, especially in winter; although, this overestimate may be artificially enhanced by uncertainties in observations. The precipitation bias over the Hungarian territory, the authors’ main area of interest, is mostly less than 20%. The model captures well the observed late twentieth-century decadal-to-interannual and interseasonal variability. On short time scales, simulated daily temperature and precipitation show a high correlation with observations, with a correlation coefficient of 0.9 for temperature and 0.6 for precipitation. Comparison with two Hungarian station time series shows that the model performance does not degrade when going to the 10-km gridpoint scale. Finally, the model reproduces the spatial distribution of dry and wet spells over the region. Overall, it is assessed that this high-resolution version of RegCM3 is of sufficiently good quality to perform climate change experiments over the Carpathian region—and, in particular, the Hungarian territory—for application to impact and adaptation studies.

Corresponding author address: Csaba Torma, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary. Email: delivitez@nimbus.elte.hu

Save