• Anders, A. M., , Roe G. H. , , Hallet B. , , Montgomery D. R. , , Finnegan N. J. , , and Putkonen J. , 2006: Spatial patterns of precipitation and topography in the Himalaya. Tectonics, Climate, and Landscape Evolution: Geological Society of America Special Paper 398, S. D. Willet et al., Eds., Geological Society of America, 39–53.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., , Iguchi T. , , Kumagai H. , , and Okamoto K. , 1997: Rain type classification algorithm for TRMM Precipitation Radar. Geoscience and Remote Sensing, 1997: IGARSS ’97, Remote Sensing—A Scientific Vision for Sustainable Development, Vol. 4, IEEE, 1633–1635.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., , and Lang T. J. , 2003: Monitoring the monsoon in the Himalayas: Observations in central Nepal, June 2001. Mon. Wea. Rev., 131 , 14081427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., , Joshi M. , , Putkonen J. , , and Burbank D. W. , 2000: A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophys. Res. Lett., 27 , 36833686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., , Kim G. , , Williams E. , , and Nesbitt S. W. , 2004: Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Nat. Hazards Earth Syst. Sci., 4 , 2951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhatt, B. C., , and Nakamura K. , 2005: Characteristics of monsoon rainfall around the Himalayas revealed by TRMM precipitation radar. Mon. Wea. Rev., 133 , 149165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhatt, B. C., , and Nakamura K. , 2006: A climatological-dynamical analysis associated with precipitation around the southern part of the Himalayas. J. Geophys. Res., 111 , D02115. doi:10.1029/2005JD006197.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., , Houze R. A. Jr., , and Mapes B. E. , 1996: Multiscale variability of deep convection in realation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53 , 13801409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiao, S., , and Barros A. P. , 2007: A numerical study of the hydrometeorological dryline in Northwest India during the monsoon. J. Meteor. Soc. Japan, 85A , 337361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Churchill, D. D., , and Houze R. A. Jr., 1984: Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci., 41 , 933960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gambheer, A. V., , and Bhat G. S. , 2001: Diurnal variation of deep cloud systems over the Indian region using INSAT-1B pixel data. Meteor. Atmos. Phys., 78 , 215225. doi:10.1007/s703-001-8175-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirose, M., , and Nakamura K. , 2002: Spatial and seasonal variation of rain profiles over Asia observed by spaceborne precipitation radar. J. Climate, 15 , 34433458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirose, M., , and Nakamura K. , 2005: Spatial and diurnal variation of precipitation systems over Asia observed by the TRMM Precipitation Radar. J. Geophys. Res., 110 , D05106. doi:10.1029/2004JD004815.

    • Search Google Scholar
    • Export Citation
  • Houze R. A. Jr., , , and Churchill D. D. , 1987: Mesoscale organization and cloud microphysics in a Bay of Bengal depression. J. Atmos. Sci., 44 , 18451868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze R. A. Jr., , , Geotis S. G. , , Marks F. D. , , and West A. K. , 1981: Winter monsoon convection in the vicinity of North Borneo. Part I: Structure and time variation of the clouds and precipitation. Mon. Wea. Rev., 109 , 15951614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze R. A. Jr., , , Wilton D. C. , , and Smull B. F. , 2007: Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteor. Soc., 133 , 13891411.

    • Search Google Scholar
    • Export Citation
  • Hoyos, C. D., , and Webster P. J. , 2007: The role of intraseasonal variability in the nature of Asian monsoon precipitation. J. Climate, 20 , 44024424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , Meneghini R. , , Awaka J. , , Kozu T. , , and Okamoto K. , 2000: Rain profiling algorithm for TRMM Precipitation Radar data. Adv. Space Res., 25 , 973976. doi:10.1016/S0273-1177(99)00933-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , Kozu T. , , Kwiatkowski J. , , Meneghini R. , , Awaka J. , , and Okamoto K. , 2009: Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteor. Soc. Japan, 87 , 130.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kikuchi, K., , and Wang B. , 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21 , 26802696.

  • Krishnamurti, T. N., , and Hawkins R. S. , 1970: Mid-tropospheric cyclones of the Southwest Monsoon. J. Appl. Meteor., 9 , 442458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , Barnes W. , , Kozu T. , , Shiue J. , , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and Julian P. R. , 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and Julian P. R. , 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29 , 11091123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and Julian P. R. , 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , and Houze R. A. Jr., 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121 , 13981416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , Warner T. T. , , and Xu M. , 2003: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131 , 830844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, S., , Houze R. A. Jr., , Kumar A. , , and Niyogi D. , 2010: Summer monsoon convection in the Himalayan region: Terrain and land cover effects. Quart. J. Roy. Meteor. Soc., 136 , 593616.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., , Jones J. A. , , Iguchi T. , , Okamoto K. , , and Kwiatkowski J. , 2001: Statistical methods of estimating average rainfall over large space–timescales using data from the TRMM Precipitation Radar. J. Appl. Meteor., 40 , 568585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murata, F., , Hayashi T. , , Matsumoto J. , , and Asada H. , 2007: Rainfall on the Meghalaya plateau in northeastern India—One of the rainiest places in the world. Nat. Hazards, 42 , 391399. doi:10.1007/s11069-006-9084-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , and Anders A. M. , 2009: Very high resolution precipitation climatologies from the Tropical Rainfall Measuring Mission precipitation radar. Geophys. Res. Lett., 36 , L15815. doi:10.1029/2009GL038026.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., , and Houze R. A. Jr., 2010: Extreme summer convection in South America. J. Climate, 23 , 37613791.

  • Romatschke, U., , Medina S. , , and Houze R. A. Jr., 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23 , 419439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawyer, J. S., 1947: The structure of the intertroopical front over NW India during the SW monsoon. Quart. J. Roy. Meteor. Soc., 73 , 346369.

  • Webster, P. J., 2006: The coupled monsoon system. The Asian Monsoon, B. Wang, Ed., Springer, 3–66.

  • Webster, P. J., , Magana V. O. , , Palmer T. N. , , Shukla J. , , Tomas R. A. , , Yanai M. , , and Yasunari T. , 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103 , 1445114510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, M., , and Houze R. A. Jr., 1987: Satellite-observed characteristics of winter monsoon cloud clusters. Mon. Wea. Rev., 115 , 505519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., , Xu H. , , Saji N. H. , , Wang Y. , , and Liu W. T. , 2006: Role of narrow mountains in large-scale organization of Asian monsoon convection. J. Climate, 19 , 34203429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., , Cecil D. J. , , Liu C. , , Nesbitt S. W. , , and Yorty D. P. , 2006: Where are the most intense thunderstorms on earth? Bull. Amer. Meteor. Soc., 87 , 10571071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., 2003: Convective clouds over the Bay of Bengal. Mon. Wea. Rev., 131 , 780798.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 131 131 31
PDF Downloads 144 144 30

Characteristics of Precipitating Convective Systems in the South Asian Monsoon

View More View Less
  • 1 University of Washington, Seattle, Washington, and University of Vienna, Vienna, Austria
  • | 2 University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

Eight years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data show how convective systems of different types contribute to precipitation of the South Asian monsoon. The main factor determining the amount of precipitation coming from a specific system is its horizontal size. Convective intensity and/or number of embedded convective cells further enhance its precipitation production. The precipitation of the monsoon is concentrated in three mountainous regions: the Himalayas and coastal ranges of western India and Myanmar. Along the western Himalayas, precipitation falls mainly from small, but highly convective systems. Farther east along the foothills, systems are more stratiform. These small and medium systems form during the day, as the monsoon flow is forced upslope. Nighttime cooling leads to downslope flow and triggers medium-sized systems at lower elevations. At the mountainous western coasts of India and Myanmar, small and medium systems are present throughout the day, as an orographic response to the southwesterly flow, with a slight superimposed diurnal cycle. Medium systems are favored over the eastern parts of the Arabian Sea and large systems are favored over the Bay of Bengal when an enhanced midlevel cyclonic circulation occurs over the northern parts of these regions. The systems forming upstream of coastal mountains over the Bay of Bengal are larger than those over the Arabian Sea, probably because of the moister conditions over the bay. The large systems over the bay exhibit a pronounced diurnal cycle, with systems forming near midnight and maximizing in midday.

Corresponding author address: Robert A. Houze Jr., Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. Email: houze@atmos.washington.edu

Abstract

Eight years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data show how convective systems of different types contribute to precipitation of the South Asian monsoon. The main factor determining the amount of precipitation coming from a specific system is its horizontal size. Convective intensity and/or number of embedded convective cells further enhance its precipitation production. The precipitation of the monsoon is concentrated in three mountainous regions: the Himalayas and coastal ranges of western India and Myanmar. Along the western Himalayas, precipitation falls mainly from small, but highly convective systems. Farther east along the foothills, systems are more stratiform. These small and medium systems form during the day, as the monsoon flow is forced upslope. Nighttime cooling leads to downslope flow and triggers medium-sized systems at lower elevations. At the mountainous western coasts of India and Myanmar, small and medium systems are present throughout the day, as an orographic response to the southwesterly flow, with a slight superimposed diurnal cycle. Medium systems are favored over the eastern parts of the Arabian Sea and large systems are favored over the Bay of Bengal when an enhanced midlevel cyclonic circulation occurs over the northern parts of these regions. The systems forming upstream of coastal mountains over the Bay of Bengal are larger than those over the Arabian Sea, probably because of the moister conditions over the bay. The large systems over the bay exhibit a pronounced diurnal cycle, with systems forming near midnight and maximizing in midday.

Corresponding author address: Robert A. Houze Jr., Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. Email: houze@atmos.washington.edu

Save