• Anderson, B., , Gibbs M. , , Hart C. , , Inman R. , , McChesney D. , , and Slattery K. , 2005: Drought response: Report to the legislature. Department of Ecology Publ. 06-11-001, 48 pp.

    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., , and Lettenmaier D. P. , 2006: Trends in 20th century drought over the continental United States. Geophys. Res. Lett., 33 , L10403. doi:10.1029/2006GL025711.

    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., , Clark E. A. , , Wood A. W. , , Hamlet A. F. , , and Lettenmaier D. P. , 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6 , 9851001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and Coauthors, 2008: Human-induced changes in the hydrology of the western United States. Science, 319 , 10801083.

  • Daly, C., , Neilson R. P. , , and Phillips D. L. , 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33 , 140158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., , Taylor G. , , and Gibson W. , 1997: The PRISM approach to mapping precipitation and temperature. Proc. 10th Conf. on Applied Climatology, Reno, NV, Amer. Meteor. Soc., 10–12.

    • Search Google Scholar
    • Export Citation
  • Elsner, M. M., and Coauthors, 2010: Implications of 21st century climate change for the hydrology of Washington State. Climatic Change, 102 , 225260. doi:10.1007/s10584-010-9855-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Executive Water Emergency Committee (EWEC), 1988: Initial drought action program for 1988. Publ. 88-902, 82 pp.

  • Fontaine, M., , and Steinemann A. C. , 2009: Assessing vulnerability to natural hazards: An impact-based method and application to drought in Washington State. Nat. Hazards Rev., 9 , 1118.

    • Search Google Scholar
    • Export Citation
  • Hart, C., , McChesney D. , , and Stohr J. , 2001: Drought response: Report to the legislature. Department of Ecology Publ. 01-11-017, 32 pp.

  • Hayes, M., , Wilhelmi O. , , and Knutson C. , 2004: Reducing drought risk: Bridging theory and practice. Nat. Hazards Rev., 5 , 106113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heim, R. R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83 , 11491165.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • King, J., 1978: The 1976–1977 drought in Washington State. Governor’s Ad Hoc Executive Water Emergency Committee, 70 pp.

  • Lettenmaier, D. P., , Wood E. F. , , and Parkinson D. B. , 1990: Operation of the Seattle water supply system during the 1987 northwest drought. J. Amer. Water Works Assoc., 82 , 5560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., , Lettenmaier D. P. , , Wood E. F. , , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for GCMs. J. Geophys. Res., 99 , 1441514428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lins, H. F., , and Slack J. R. , 1999: Streamflow trends in the United States. Geophys. Res. Lett., 26 , 227230.

  • Lott, N., , and Ross T. , 2006: Tracking and evaluating U.S. billion dollar weather disasters, 1980–2005. Extended Abstracts, AMS Forum: Environmental Risk and Impacts on Society: Successes and Challenges, Atlanta, GA, Amer. Meteor. Soc., 1.2.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., , Wood A. W. , , Adam J. C. , , Lettenmaier D. P. , , and Nijssen B. , 2002: A long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States. J. Climate, 15 , 32373251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKee, T. B., , Doesken N. J. , , and Kleist J. , 1993: The relationship of drought frequency and duration to time scales. Proc. Eighth Conf. of Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., , Cherkauer K. , , and Shukla S. , 2010: Assessment of drought due to historic climate variability and projected future climate change in the midwestern United States. J. Hydrometeor., 11 , 4668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109 , D07S90. doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2008: Model-based drought indices over the United States. J. Hydrometeor., 9 , 12121230.

  • Mote, P. W., , Hamlet A. F. , , Clark M. P. , , and Lettenmaier D. P. , 2005: Declining mountain snowpack in western North America. Bull. Amer. Meteor. Soc., 86 , 3949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., , Hamlet A. F. , , and Salathé E. P. , 2008: Has spring snowpack declined in the Washington Cascades? Hydrol. Earth Syst. Sci., 12 , 193206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological drought. Research Paper 45, U.S. Department of Commerce Weather Bureau, Washington, DC.

  • Riebsame, W. E., , Changnon S. A. , , and Karl T. R. , 1991: Drought and natural resources management in the United States: Impacts and implications of the 1987–89 drought. Westview Press, 174 pp.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , and Wood E. F. , 2008: Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dyn., 13 , 79105.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , Goteti G. , , Wen F. , , and Wood E. F. , 2004: A simulated soil moisture based drought analysis for the United States. J. Geophys. Res., 109 , D24108. doi:10.1029/2004JD005182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , Andreadis K. M. , , Wood E. F. , , and Lettenmaier D. P. , 2009: Global and continental drought in the second half of the twentieth century: Severity-area-duration analysis and temporal variability of large-scale events. J. Climate, 22 , 19621981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, S., , and Wood A. W. , 2008: Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., 35 , L02405. doi:10.1029/2007GL032487.

    • Search Google Scholar
    • Export Citation
  • Steinemann, A., 2003: Drought indicators and triggers: A stochastic approach to evaluation. J. Amer. Water Res. Assoc., 39 , 12171234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinemann, A., , and Cavalcanti L. , 2006: Developing multiple indicators and triggers for drought plans. J. Water Resour. Plann. Manage., 132 , 164174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., Eds. 2000: Drought: A Global Assessment. Natural Hazards and Disasters Series, Vol. 1, Routledge, 396 pp.

  • Wood, A. W., , and Lettenmaier D. P. , 2006: A testbed for new seasonal hydrologic forecasting approaches in the western U.S. Bull. Amer. Meteor. Soc., 87 , 16991712.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 152 152 18
PDF Downloads 111 111 19

Drought Monitoring for Washington State: Indicators and Applications

View More View Less
  • 1 Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

A drought monitoring system (DMS) can help to detect and characterize drought conditions and reduce adverse drought impacts. The authors evaluate how a DMS for Washington State, based on a land surface model (LSM), would perform. The LSM represents current soil moisture (SM), snow water equivalent (SWE), and runoff over the state. The DMS incorporates the standardized precipitation index (SPI), standardized runoff index (SRI), and soil moisture percentile (SMP) taken from the LSM. Four historical drought events (1976–77, 1987–89, 2000–01, and 2004–05) are constructed using DMS indicators of SPI/SRI-3, SPI/SRI-6, SPI/SRI-12, SPI/SRI-24, SPI/SRI-36, and SMP, with monthly updates, in each of the state’s 62 Water Resource Inventory Areas (WRIAs). The authors also compare drought triggers based on DMS indicators with the evolution of drought conditions and management decisions during the four droughts. The results show that the DMS would have detected the onset and recovery of drought conditions, in many cases, up to four months before state declarations.

Corresponding author address: Shraddhanand Shukla, Wilson Ceramic Laboratory, University of Washington, Seattle, WA 98195-2700. Email: shrad@hydro.washington.edu

Abstract

A drought monitoring system (DMS) can help to detect and characterize drought conditions and reduce adverse drought impacts. The authors evaluate how a DMS for Washington State, based on a land surface model (LSM), would perform. The LSM represents current soil moisture (SM), snow water equivalent (SWE), and runoff over the state. The DMS incorporates the standardized precipitation index (SPI), standardized runoff index (SRI), and soil moisture percentile (SMP) taken from the LSM. Four historical drought events (1976–77, 1987–89, 2000–01, and 2004–05) are constructed using DMS indicators of SPI/SRI-3, SPI/SRI-6, SPI/SRI-12, SPI/SRI-24, SPI/SRI-36, and SMP, with monthly updates, in each of the state’s 62 Water Resource Inventory Areas (WRIAs). The authors also compare drought triggers based on DMS indicators with the evolution of drought conditions and management decisions during the four droughts. The results show that the DMS would have detected the onset and recovery of drought conditions, in many cases, up to four months before state declarations.

Corresponding author address: Shraddhanand Shukla, Wilson Ceramic Laboratory, University of Washington, Seattle, WA 98195-2700. Email: shrad@hydro.washington.edu

Save