• Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev., 115, 10531070.

  • Bao, J.-W., , Michelson S. A. , , Neiman P. J. , , Ralph F. M. , , and Wilczak J. M. , 2006: Interpretation of enhanced integrated water-vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1980: Report on a meeting to establish a common Doppler radar data exchange format. Bull. Amer. Meteor. Soc., 61, 14011404.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Bougeault, P., and Coauthors, 2001: The MAP special observing period. Bull. Amer. Meteor. Soc., 82, 433462.

  • Braham, R. R., 1964: What is the role of ice in summer rain showers? J. Atmos. Sci., 21, 640645.

  • Carbone, R. E., , Cooper W. A. , , and Lee W.-C. , 1995: Forcing of flow reversal along the windward slopes of Hawaii. Mon. Wea. Rev., 123, 34663480.

    • Search Google Scholar
    • Export Citation
  • Castello, A. F., , and Shelton M. L. , 2004: Winter precipitation on the U.S. Pacific coast and El Niño–Southern Oscillation Events. Int. J. Climatol., 24, 481497.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., , and Roads J. O. , 1984: Local relationships between U.S. West Coast precipitation and monthly mean circulation parameters. Mon. Wea. Rev., 112, 12761282.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2008: Two-dimensional idealized simulations of the impact of multiple windward ridges on orographic precipitation. J. Atmos. Sci., 65, 509523.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , and Mass C. F. , 2000: The 5–9 February 1996 flooding event over the Pacific Northwest: Sensitivity studies and evaluation of the MM5 precipitation forecasts. Mon. Wea. Rev., 128, 593617.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , Garvert M. F. , , Wolfe J. B. , , Mass C. F. , , and Woods C. P. , 2005a: The 13–14 December 2001 IMPROVE-2 event. Part III: Simulated microphysical budgets and sensitivity studies. J. Atmos. Sci., 62, 35353558.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , Wolfe J. B. , , Steenburgh W. J. , , Kingsmill D. E. , , Cox J. A. W. , , and Shafer J. C. , 2005b: High-resolution simulations and microphysical validation of an orographic precipitation event over the Wasatch Mountains during IPEX IOP3. Mon. Wea. Rev., 133, 29472971.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , Lin Y. , , Medina S. , , and Smull B. F. , 2008: Orographic modification of convection and flow kinematics by the Oregon Coast Range and Cascades during IMPROVE-2. Mon. Wea. Rev., 136, 38943916.

    • Search Google Scholar
    • Export Citation
  • Daly, C., , Neilson R. P. , , and Phillips D. L. , 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., , and Jiang Q. , 2006: Observations and numerical simulations of mountain waves in the presence of directional wind shear. Quart. J. Roy. Meteor. Soc., 132, 18771905.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., , and Klemp J. B. , 1982: On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39, 21522158.

  • Frei, C., , and Schär C. , 1998: A precipitation climatology of the Alps from high-resolution rain gauge observations. Int. J. Climatol., 18, 873900.

    • Search Google Scholar
    • Export Citation
  • Galewsky, J., , and Sobel A. , 2005: Moist dynamics and orographic precipitation in northern and central California during the New Year’s flood of 1997. Mon. Wea. Rev., 133, 15941612.

    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., , Colle B. A. , , and Mass C. F. , 2005a: The 13–14 December 2001 IMPROVE-2 event. Part I: Synoptic and mesoscale evolution and comparison with a mesoscale model simulation. J. Atmos. Sci., 62, 34743492.

    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., , Woods C. P. , , Colle B. A. , , Mass C. F. , , Hobbs P. V. , , Stoelinga M. T. , , and Wolfe J. B. , 2005b: The 13–14 December 2001 IMPROVE-2 event. Part II: Comparisons of MM5 model simulations of clouds and precipitation with observations. J. Atmos. Sci., 62, 35203534.

    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., , Smull B. , , and Mass C. , 2007: Multiscale mountain waves influencing a major orographic precipitation event. J. Atmos. Sci., 64, 711737.

    • Search Google Scholar
    • Export Citation
  • Guirguis, K. J., , and Avissar R. , 2008: A precipitation climatology and dataset intercomparison for the western United States. J. Hydrometeor., 9, 825841.

    • Search Google Scholar
    • Export Citation
  • Hagen, M., , and Yuter S. E. , 2003: Relation between radar reflectivity and rainfall rate during the MAP-SOP. Quart. J. Roy. Meteor. Soc., 129, 477493.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., , and Lettenmaier D. P. , 2007: Effects of 20th century warming and climate variability on flood risk in the western U.S. Water Resour. Res., 43, W06427, doi:10.1029/2006WR005099.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , and Medina S. , 2005: Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62, 35993623.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , James C. N. , , and Medina S. , 2001: Radar observations of precipitation and airflow on the Mediterranean side of the Alps: Autumn 1998 and 1999. Quart. J. Roy. Meteor. Soc., 127, 25372558.

    • Search Google Scholar
    • Export Citation
  • Hughes, M., , Hall A. , , and Fovell R. G. , 2009: Blocking in areas of complex topography, and its influence on rainfall distributions. J. Atmos. Sci., 66, 508518.

    • Search Google Scholar
    • Export Citation
  • James, C. N., , and Houze R. A. Jr., 2001: A real-time four-dimensional Doppler dealiasing scheme. J. Atmos. Oceanic Technol., 18, 16741683.

    • Search Google Scholar
    • Export Citation
  • James, C. N., , and Houze R. A. Jr., 2005: Modification of precipitation by coastal orography in storms crossing northern California. Mon. Wea. Rev., 133, 31103131.

    • Search Google Scholar
    • Export Citation
  • James, C. N., , Brodzik S. R. , , Edmon H. , , Houze R. A. Jr., , and Yuter S. E. , 2000: Radar data processing and visualization over complex terrain. Wea. Forecasting, 15, 327338.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55, 301316.

  • Johnson, D. B., 1987: On the relative efficiency of coalescence and riming. J. Atmos. Sci., 44, 16711680.

  • Joss, J., and Coauthors, 1998: Operational Use of Radar for Precipitation Measurements in Switzerland. vdf Hochschulverlag AG an der ETH Zürich, 108 pp.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kirshbaum, D. J., , and Durran D. R. , 2005: Atmospheric factors governing banded orographic convection. J. Atmos. Sci., 62, 37583774.

  • Krajewski, W. F., , and Smith J. A. , 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25, 13871394.

  • Kunz, M., , and Kottmeier C. , 2006: Orographic enhancement of precipitation over low mountain ranges. Part I: Model formulation and idealized simulations. J. Appl. Meteor. Climatol., 45, 10251040.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., , and Gyakum J. R. , 1999: Heavy cold-season precipitation in the northwestern United States: Synoptic climatology and an analysis of the flood of 17–18 January 1986. Wea. Forecasting, 14, 687700.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., , Neiman P. J. , , Martner B. , , White A. B. , , Gottas D. J. , , and Ralph F. M. , 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of the melting level. J. Hydrometeor., 9, 194211.

    • Search Google Scholar
    • Export Citation
  • Medina, S., , and Houze R. A. Jr., 2003: Air motions and precipitation growth in Alpine storms. Quart. J. Roy. Meteor. Soc., 129, 345371.

    • Search Google Scholar
    • Export Citation
  • Medina, S., , Smull B. F. , , Houze R. A. Jr., , and Steiner M. , 2005: Cross-barrier flow during orographic precipitation events: Results from MAP and IMPROVE. J. Atmos. Sci., 62, 35803598.

    • Search Google Scholar
    • Export Citation
  • Medina, S., , Sukovich E. , , and Houze R. A. Jr., 2007: Vertical structures of precipitation in cyclones crossing the Oregon Cascades. Mon. Wea. Rev., 135, 35653586.

    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., , and Rotunno R. , 2006: Further results on moist nearly neutral flow over a ridge. J. Atmos. Sci., 63, 28812897.

  • Minder, J. R., , Durran D. R. , , Roe G. H. , , and Anders A. M. , 2008: The climatology of small-scale orographic precipitation over the Olympic Mountains: Patterns and processes. Quart. J. Roy. Meteor. Soc., 134, 817839.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , Persson P. O. G. , , Ralph F. M. , , Jorgensen D. P. , , White A. B. , , and Kingsmill D. E. , 2004: Modification of fronts and precipitation by coastal blocking during an intense landfalling winter storm in Southern California: Observations during CALJET. Mon. Wea. Rev., 132, 242273.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , Ralph F. M. , , Wick G. A. , , Lundquist J. D. , , and Dettinger M. D. , 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247.

    • Search Google Scholar
    • Export Citation
  • Panziera, L., , and Germann U. , 2010: The relationship between airflow and orographic precipitation in the Southern Alps as revealed by weather radar. Quart. J. Roy. Meteor. Soc., 136, 222238.

    • Search Google Scholar
    • Export Citation
  • Praskievicz, S., , and Chang H. , 2009: Winter precipitation intensity and ENSO/PDO variability in the Willamette Valley of Oregon. Int. J. Climatol., 29, 20332039.

    • Search Google Scholar
    • Export Citation
  • Pujol, O., , Georgis J. F. , , Chong M. , , and Roux F. , 2005: Dynamics and microphysics of orographic precipitation during MAP IOP 3. Quart. J. Roy. Meteor. Soc., 131, 27952819.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , Neiman P. J. , , Kingsmill D. E. , , Persson P. O. G. , , and White A. B. , 2003: The impact of a prominent rain shadow on flooding in California’s Santa Cruz Mountains: A CALJET case study and sensitivity to the ENSO cycle. J. Hydrometeor., 4, 12431264.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , Neiman P. J. , , and Wick G. A. , 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , Neiman P. J. , , and Rotunno R. , 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910.

    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., , and Lin Y. L. , 2008: Dynamic forcing and mesoscale variability of heavy precipitation events over the Sierra Nevada Mountains. Mon. Wea. Rev., 136, 6277.

    • Search Google Scholar
    • Export Citation
  • Reinecke, P. A., , and Durran D. R. , 2008: Estimating topographic blocking using a Froude number when the static stability is nonuniform. J. Atmos. Sci., 65, 10351048.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and Ferretti R. , 2001: Mechanisms of intense Alpine rainfall. J. Atmos. Sci., 58, 17321749.

  • Rotunno, R., , and Houze R. A. Jr., 2007: Lessons on orographic precipitation from the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc., 133, 811830.

    • Search Google Scholar
    • Export Citation
  • Seo, D. J., , Breidenback J. , , Fulton R. , , and Miller D. , 2000: Real-time adjustment of range-dependent biases in WSR-88D rainfall estimates due to nonuniform vertical profile of reflectivity. J. Hydrometeor., 1, 222240.

    • Search Google Scholar
    • Export Citation
  • Sharp, J., , and Mass C. F. , 2004: Columbia Gorge gap winds: Their climatological influence and synoptic evolution. Wea. Forecasting, 19, 970992.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230.

  • Smith, R. B., 2003: A linear upslope-time-delay model for orographic precipitation. J. Hydrol., 282, 29.

  • Smith, R. B., 2006: Progress on the theory of orographic precipitation. Tectonics, Climate and Landscape Evolution: Geological Society of America Special Paper 398, S. D. Willett et al., Eds., Penrose Conference Series, 1–16.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., , and Barstad I. , 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61, 13771391.

  • Smith, R. B., , Jiang Q. , , Fearon M. G. , , Tabary P. , , Dorninger M. , , Doyle J. D. , , and Benoit R. , 2003: Orographic precipitation and air mass transformation: An Alpine example. Quart. J. Roy. Meteor. Soc., 129, 433454.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., , Barstad I. , , and Bonneau L. , 2005: Orographic precipitation and Oregon’s climate transition. J. Atmos. Sci., 62, 177191.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., and Coauthors, 2003: Improvement of Microphysical Parameterization through Observational Verification Experiment (IMPROVE). Bull. Amer. Meteor. Soc., 84, 18071826.

    • Search Google Scholar
    • Export Citation
  • Taleb, N. N., 2007: The Black Swan: The Impact of the Highly Improbable. Random House, 366 pp.

  • Tanré, D., , Artuxo P. , , Yuter S. , , and Kaufman Y. , 2008: In situ and remote sensing techniques for measuring aerosols, clouds, and precipitation. Aerosol Pollution Impacts on Precipitation: A Scientific Review, Springer, 143–203.

    • Search Google Scholar
    • Export Citation
  • Westrick, K. J., , Mass C. F. , , and Colle B. A. , 1999: The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States. Bull. Amer. Meteor. Soc., 80, 22892298.

    • Search Google Scholar
    • Export Citation
  • White, A. B., , Neiman P. J. , , Ralph F. M. , , Kingsmill D. E. , , and Persson P. O. G. , 2003: Coastal orographic rainfall processes observed by radar during the California Land-Falling Jets Experiment. J. Hydrometeor., 4, 264282.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., 2002: Precipitation radar. Encyclopedia of Atmospheric Sciences, J. Holton et al., Eds., Academic Press, 1833–1852.

  • Yuter, S. E., , Kingsmill D. , , Nance L. B. , , and Löffler-Mang M. , 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol., 45, 14501464.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2008: The temperature dependence of small-scale orographic precipitation enhancement. Quart. J. Roy. Meteor. Soc., 134, 11671181.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., , and Newell R. E. , 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 75 75 6
PDF Downloads 18 18 3

The Impact of Varying Environmental Conditions on the Spatial and Temporal Patterns of Orographic Precipitation over the Pacific Northwest near Portland, Oregon

View More View Less
  • 1 North Carolina State University, Raleigh, North Carolina
  • | 2 Stony Brook University, Stony Brook, New York
© Get Permissions
Restricted access

Abstract

Operational radar data from three winter seasons (2003–06) in Portland, Oregon, in the U.S. Pacific Northwest are used to describe how orographic precipitation varies with cross-barrier wind speed, 0°C level height, and stability over the moderately wide (~50-km half-width) Cascade Mountain Range. Orographic enhancement is specified in terms of location, frequency, and relative intensity of the reflectivity (precipitation field). The typical storm for the region, as defined by the 25th to 75th percentile characteristics, is compared to storms with <25th and >75th percentile characteristics for a given variable. About half of Portland-region storms have a low-level wind direction within a relatively narrow azimuth range. This subset of storms is used to examine the sensitivity of orographic enhancement relative to other environmental variables. Cross-barrier wind speed has a stronger role in determining the magnitude of precipitation frequency than either 0°C level or stability. Cross-barrier wind speed and 0°C level height have separate but comparable roles in determining the frequency of relatively heavier precipitation. The increase in precipitation frequency with stronger cross-barrier wind speed is partially attributed to the higher occurrence of intermittent convective cells intersecting the slope. The area where inferred riming growth occurs over local peaks on the windward slope broadens upslope as the 0°C level height increases. In the Portland region, variations in the squared moist Brunt–Väisälä frequency yield smaller differences in the pattern and intensity of precipitation enhancement than either cross-barrier wind speed or 0°C level height.

Corresponding author address: Dr. Sandra E. Yuter, Dept. of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695. E-mail: seyuter@ncsu.edu

This article included in the State of the Science of Precipitation special collection.

Abstract

Operational radar data from three winter seasons (2003–06) in Portland, Oregon, in the U.S. Pacific Northwest are used to describe how orographic precipitation varies with cross-barrier wind speed, 0°C level height, and stability over the moderately wide (~50-km half-width) Cascade Mountain Range. Orographic enhancement is specified in terms of location, frequency, and relative intensity of the reflectivity (precipitation field). The typical storm for the region, as defined by the 25th to 75th percentile characteristics, is compared to storms with <25th and >75th percentile characteristics for a given variable. About half of Portland-region storms have a low-level wind direction within a relatively narrow azimuth range. This subset of storms is used to examine the sensitivity of orographic enhancement relative to other environmental variables. Cross-barrier wind speed has a stronger role in determining the magnitude of precipitation frequency than either 0°C level or stability. Cross-barrier wind speed and 0°C level height have separate but comparable roles in determining the frequency of relatively heavier precipitation. The increase in precipitation frequency with stronger cross-barrier wind speed is partially attributed to the higher occurrence of intermittent convective cells intersecting the slope. The area where inferred riming growth occurs over local peaks on the windward slope broadens upslope as the 0°C level height increases. In the Portland region, variations in the squared moist Brunt–Väisälä frequency yield smaller differences in the pattern and intensity of precipitation enhancement than either cross-barrier wind speed or 0°C level height.

Corresponding author address: Dr. Sandra E. Yuter, Dept. of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695. E-mail: seyuter@ncsu.edu

This article included in the State of the Science of Precipitation special collection.

Save