• Alcamo, J., , Döll P. , , Henrichs T. , , Kaspar F. , , Lehner B. , , Rösch T. , , and Siebert S. , 2003: Global estimates of water withdrawals and availability under current and future business-as-usual conditions. Hydrol. Sci. J., 48, 339348.

    • Search Google Scholar
    • Export Citation
  • Alo, C. A., , and Wang G. , 2008: Hydrological impact of the potential future vegetation response to climate changes projected by 8 GCMs. J. Geophys. Res., 113, G03011, doi:10.1029/2007JG000598.

    • Search Google Scholar
    • Export Citation
  • Amthor, J. S., 1995: Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Global Change Biol., 1, 243274.

    • Search Google Scholar
    • Export Citation
  • Arnell, N. W., 2004: Climate change and global water resources: SRES emissions and socio-economic scenarios. Global Environ. Change, 14, 3152.

    • Search Google Scholar
    • Export Citation
  • Bachelet, D., and Coauthors, 2003: Simulating past and future dynamics of natural ecosystems in the United States. Global Biogeochem. Cycles, 17, 1045, doi:10.1029/2001GB001508.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., , Adam J. C. , , and Lettenmaier D. P. , 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and Coauthors, 2008: Human-induced changes in the hydrology of the western United States. Science, 319, 10801083.

  • Beltrán-Przekurat, A., , Marshall C. H. , , and Pielke R. A. Sr., 2008: Ensemble reforecasts of recent warm-season weather: Impacts of a dynamic vegetation parameterization. J. Geophys. Res., 113, D24116, doi:10.1029/2007JD009480.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., , Cox P. M. , , Collins M. , , Harris P. P. , , Huntingford C. , , and Jones C. D. , 2004: The role of ecosystem–atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor. Appl. Climatol., 78, 157175, doi:10.1007/s00704-004-0050-y.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., and Coauthors, 2007: Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature, 448, 10371041.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., , Jones A. , , and Betts R. , 2009: Climate response to the physiological impact of carbon dioxide on plants in the Met Office Unified Model HadCM3. Climate Dyn., 32, 237249.

    • Search Google Scholar
    • Export Citation
  • Bridgham, S. D., , Pastor J. , , Updegraff K. , , Malterer T. J. , , Johnson K. , , Harth C. , , and Chen J. , 1999: Ecosystem control over temperature and energy flux in northern peatlands. Ecol. Appl., 9, 13451358.

    • Search Google Scholar
    • Export Citation
  • Cao, M. K., , and Woodward F. I. , 1998: Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393, 249252.

    • Search Google Scholar
    • Export Citation
  • Churkina, G., , and Running S. W. , 1998: Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems, 1, 206215.

    • Search Google Scholar
    • Export Citation
  • Claussen, M., , Brovkin V. , , and Ganopolski A. , 2001: Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys. Res. Lett., 28, 10111014.

    • Search Google Scholar
    • Export Citation
  • Cogley, J. G., 2003: GGHYDRO—Global Hydrographic Data, release 2.3.1. Trent University Tech. Note 2003-1, 8 pp.

  • Collatz, G. J., , Ribas-Carbo M. , , and Berry J. A. , 1992: A coupled photosynthesis–stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol., 19, 519538.

    • Search Google Scholar
    • Export Citation
  • Cong, Z., , Yang D. , , Gao B. , , Yang H. , , and Hu H. , 2009: Hydrological trend analysis in the Yellow River basin using a distributed hydrological model. Water Resour. Res., 45, W00A13, doi:10.1029/2008WR006852.

    • Search Google Scholar
    • Export Citation
  • Cowling, S. A., , and Field C. B. , 2003: Environmental control of leaf area production: Implications for vegetation and land-surface modeling. Global Biogeochem. Cycles, 17, 1007, doi:10.1029/2002GB001915.

    • Search Google Scholar
    • Export Citation
  • Cramer, W., and Coauthors, 2001: Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biol., 7, 357373.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , Qian T. , , Trenberth K. E. , , and Milliman J. D. , 2009: Changes in continental freshwater discharge from 1948 to 2004. J. Climate, 22, 27732792.

    • Search Google Scholar
    • Export Citation
  • de Wit, M., , and Stankiewicz J. , 2006: Changes in surface water supply across Africa with predicted climate change. Science, 311, 19171921.

    • Search Google Scholar
    • Export Citation
  • Doherty, R. M., , Sitch S. , , Smith B. , , Lewis S. L. , , and Thornton P. K. , 2010: Implications of future climate and atmospheric CO2 content for regional biogeochemistry, biogeography and ecosystem services across East Africa. Global Change Biol., 16, 617640.

    • Search Google Scholar
    • Export Citation
  • FAO, 1991: The Digitized Soil Map of the World, release 1.0. Food and Agricultural Organization of the United Nations World Soil Resources Rep. 67/1. [Available online at http://www.fao.org/nr/land/soils/digital-soil-map-of-the-world/en/.]

    • Search Google Scholar
    • Export Citation
  • Farquhar, G. D., , von Caemmerer S. , , and Berry J. A. , 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 7890.

    • Search Google Scholar
    • Export Citation
  • Federer, C. A., 1982: Transpirational supply and demand: Plant, soil, and atmospheric effects evaluated by simulation. Water Resour. Res., 18, 355362.

    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., , Vörösmarty C. J. , , and Grabs W. , 2002: High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles, 16, 1042, doi:10.1029/1999GB001254.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., , Boer G. J. , , Lee W. G. , , McFarlane N. A. , , Ramsden D. , , Reader M. C. , , and Weaver A. J. , 2000: The Canadian Centre for Climate Modeling and Analysis global coupled model and its climate. Climate Dyn., 16, 451467.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., , Prentice I. C. , , Ramankutty N. , , Levis S. , , Pollard D. , , Sitch S. , , and Haxeltine A. , 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles, 10, 603628.

    • Search Google Scholar
    • Export Citation
  • Fu, C. B., , and Wen G. , 1999: Variation of ecosystems in East Asia in association with the seasonal, interannual and interdecadal variations of monsoon climate. Climatic Change, 43, 477494.

    • Search Google Scholar
    • Export Citation
  • Gedney, N., , Cox P. M. , , Betts R. A. , , Boucher O. , , Huntingford C. , , and Stott P. A. , 2006: Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 439, 835838.

    • Search Google Scholar
    • Export Citation
  • Gerten, D., , Schaphoff S. , , Haberlandt U. , , Lucht W. , , and Sitch S. , 2004: Terrestrial vegetation and water balance: Hydrological evaluation of a dynamic global vegetation model. J. Hydrol., 286, 249270.

    • Search Google Scholar
    • Export Citation
  • Gerten, D., , Schaphoff S. , , and Lucht W. , 2007: Potential future changes in water limitations of the terrestrial biosphere. Climatic Change, 80, 277299.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., , Cooper C. , , Senior C. A. , , Banks H. , , Gregory J. M. , , Johns T. C. , , Mitchell J. F. B. , , and Wood R. A. , 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147168.

    • Search Google Scholar
    • Export Citation
  • Haxeltine, A., , and Prentice I. C. , 1996: BIOME3: An equilibrium biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochem. Cycles, 10, 693709.

    • Search Google Scholar
    • Export Citation
  • Homma, K., , Nakagawa H. , , Horie T. , , Ohnishi H. , , Kim H. Y. , , and Ohnishi M. , 1999: Energy budget and transpiration characteristics of rice grown under elevated CO2 and high temperature conditions as determined by remotely sensed canopy temperatures. Japan J. Crop Sci., 68, 137145.

    • Search Google Scholar
    • Export Citation
  • Housman, D. C., , Naumburg E. , , Huxman T. E. , , Charlet T. N. , , Nowak R. S. , , and Smith S. D. , 2006: Increases in desert shrub productivity under elevated carbon dioxide vary with water. Ecosystems, 9, 374385.

    • Search Google Scholar
    • Export Citation
  • Hungate, B. A., , Dukes J. S. , , Shaw R. , , Luo Y. , , and Field C. B. , 2003: Nitrogen and climate change. Science, 302, 15121513.

  • Johns, T. C., , Carnell R. E. , , Crossley J. F. , , Gregory J. M. , , Mitchell J. F. B. , , Senior C. A. , , Tett S. F. B. , , and Wood R. A. , 1997: The second Hadley Centre coupled ocean–atmosphere GCM: Model description, spinup and validation. Climate Dyn., 13, 103134.

    • Search Google Scholar
    • Export Citation
  • Keeling, C. D., , and Whorf T. P. , cited 2005: Atmospheric CO2 records from sites in the SIO air sampling network. Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. [Available online at http://cdiac.ornl.gov/trends/co2/sio-keel.html.]

    • Search Google Scholar
    • Export Citation
  • Kergoat, L., , Lafont S. , , Douville H. , , Berthelot B. , , Dedieu G. , , Planton S. , , and Royer J.-F. , 2002: Impact of doubled CO2 on global-scale leaf area index and evapotranspiration: Conflicting stomatal conductance and LAI responses. J. Geophys. Res., 107, 4808, doi:10.1029/2001JD001245.

    • Search Google Scholar
    • Export Citation
  • Kicklighter, D. W., and Coauthors, 1999: A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: A comparison study of four terrestrial biosphere models. Tellus, 51B, 343366.

    • Search Google Scholar
    • Export Citation
  • Korzun, V. I., and Coauthors, 1977: Atlas of World Water Balance. UNESCO Press, 34 pp. + 65 maps.

  • Koutsoyiannis, D., , Efstratiadis A. , , and Georgakakos K. P. , 2007: Uncertainty assessment of future hydroclimatic predictions: A comparison of probabilistic and scenario-based approaches. J. Hydrometeor., 8, 261281.

    • Search Google Scholar
    • Export Citation
  • Labat, D., , Goddéris Y. , , Probst J. L. , , and Guyot J. L. , 2004: Evidence for global streamflow increase related to climate warming. Adv. Water Resour., 27, 631642.

    • Search Google Scholar
    • Export Citation
  • Levis, S., , Foley J. A. , , and Pollard D. , 2000: Large-scale vegetation feedbacks on a doubled CO2 climate. J. Climate, 13, 13131325.

  • Lin, E., , Xu Y. , , Wu S. , , Ju H. , , and Ma S. , 2007: China’s National Assessment Report on Climate Change (II): Climate change impacts and adaptation (in Chinese). Adv. Climate Change Res., 2, 5156.

    • Search Google Scholar
    • Export Citation
  • Lloyd, J., , and Taylor J. A. , 1994: On the temperature dependence of soil respiration. Funct. Ecol., 8, 315323.

  • Lotsch, A., , Friedl M. A. , , Anderson B. T. , , and Tucker C. J. , 2003: Coupled vegetation–precipitation variability observed from satellite and climate records. Geophys. Res. Lett., 30, 1774, doi:10.1029/2003GL017506.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., and Coauthors, 2008: Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones. Global Change Biol., 14, 19861999.

    • Search Google Scholar
    • Export Citation
  • McGuire, A. D., and Coauthors, 2001: Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles, 15, 183206.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., , Dunne K. A. , , and Vecchia A. V. , 2005: Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347350.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., , Cherkauer K. A. , , and Shukla S. , 2010: Assessment of drought due to historic climate variability and projected future climate change in the midwestern United States. J. Hydrometeor., 11, 4668.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., , and Jones P. D. , 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., , Carter T. R. , , Jones P. D. , , Hulme M. , , and New M. , 2004: A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Center for Climate Change Research Working Paper 55, 30 pp.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1995: Accommodation between transpiring vegetation and the convective boundary layer. J. Hydrol., 166, 251263.

  • Morales, P., , Hickler T. , , Rowell D. P. , , Smith B. , , and Sykes M. T. , 2007: Changes in European ecosystem productivity and carbon balance driven by regional climate model output. Global Change Biol., 13, 108122.

    • Search Google Scholar
    • Export Citation
  • Mu, Q., , Heinsch F. A. , , Zhao M. , , and Running S. W. , 2007: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ., 111, 519536.

    • Search Google Scholar
    • Export Citation
  • Nemani, R. R., , Keeling C. D. , , Hashimoto H. , , Jolly W. M. , , Piper S. C. , , Tucker C. J. , , Myneni R. B. , , and Running S. W. , 2003: Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 15601563.

    • Search Google Scholar
    • Export Citation
  • Nie, D., , He H. , , Mo G. , , Kirkham M. B. , , and Kanemasu E. T. , 1992: Canopy photosynthesis and evapotranspiration of rangeland plants under doubled carbon dioxide in closed-top chambers. Agric. For. Meteor., 61, 205221.

    • Search Google Scholar
    • Export Citation
  • Norby, R. J., , and Luo Y. , 2004: Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol., 162, 281294.

    • Search Google Scholar
    • Export Citation
  • Oki, T., , and Kanae S. , 2006: Global hydrological cycle and world water resources. Science, 313, 10681072.

  • Piao, S., , Friedlingstein P. , , Ciais P. , , de Noblet-Ducoudré N. , , Labat D. , , and Zaehle S. , 2007: Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl. Acad. Sci. USA, 104, 15 24215 247.

    • Search Google Scholar
    • Export Citation
  • Prentice, I. C., and Coauthors, 2001: The carbon cycle and atmospheric carbon dioxide. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 185–224.

    • Search Google Scholar
    • Export Citation
  • Rustad, L. E., 2006: From transient to steady-state response of ecosystems to atmospheric CO2-enrichment and global climate change: Conceptual challenges and need for an integrated approach. Plant Ecol., 182, 4362, doi:10.1007/s11258-005-9030-2.

    • Search Google Scholar
    • Export Citation
  • Scholze, M., , Knorr W. , , Arnell N. , , and Prentice I. C. , 2006: A climate-change risk analysis for world ecosystems. Proc. Natl. Acad. Sci. USA, 103, 13 11613 120.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1997: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275, 502509.

    • Search Google Scholar
    • Export Citation
  • Sitch, S., and Coauthors, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol., 9, 161185.

    • Search Google Scholar
    • Export Citation
  • Sitch, S., and Coauthors, 2008: Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Global Change Biol., 14, 20152039.

    • Search Google Scholar
    • Export Citation
  • Tao, F., , and Zhang Z. , 2010: Dynamic responses of terrestrial ecosystem structure and function to climate change in China. J. Geophys. Res., 115, G03003, doi:10.1029/2009JG001062.

    • Search Google Scholar
    • Export Citation
  • Tao, F., , Yokozawa M. , , Hayashi Y. , , and Lin E. , 2003: Terrestrial water budget and the impacts of climate change. Ambio, 32, 295301.

  • Tao, F., , Yokozawa M. , , Hayashi Y. , , and Lin E. , 2005: A perspective on water resources in China: Interactions between climate change and soil degradation. Climatic Change, 68, 169197.

    • Search Google Scholar
    • Export Citation
  • Tao, F., , Yokozawa M. , , Zhang Z. , , Hayashi Y. , , and Ishigooka Y. , 2008: Land surface phenology dynamics and climate variations in the North East China Transect (NECT), 1982–2000. Int. J. Remote Sens., 29, 54615478.

    • Search Google Scholar
    • Export Citation
  • Vano, J. A., , Foley J. A. , , Kucharik C. J. , , and Coe M. T. , 2008: Controls of climatic variability and land cover on land surface hydrology of northern Wisconsin, USA. J. Geophys. Res., 113, G04040, doi:10.1029/2007JG000681.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., , Green P. , , Salisbury J. , , and Lammers R. B. , 2000: Global water resources: Vulnerability from climate change and population growth. Science, 289, 284288.

    • Search Google Scholar
    • Export Citation
  • Wu, S., , Yin Y. , , Zhao D. , , Huang M. , , Shao X. , , and Dai E. , 2010: Impact of future climate change on terrestrial ecosystems in China. Int. J. Climatol., 30, 866873.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , and Wang Q. , Eds., 2007: The Impacts of Climate Change on Hydrology and Water Resources. Science Press, 214 pp.

  • Zhang, X., , Zhang L. , , Zhao J. , , Rustomji P. , , and Hairsine P. , 2008: Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res., 44, W00A07, doi:10.1029/2007WR006711.

    • Search Google Scholar
    • Export Citation
  • Zobler, L., 1986: A world soil file for global climate modeling. NASA Tech. Memo. 87802, 32 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 5
PDF Downloads 10 10 6

Dynamic Response of Terrestrial Hydrological Cycles and Plant Water Stress to Climate Change in China

View More View Less
  • 1 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
  • | 2 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
© Get Permissions
Restricted access

Abstract

Rising atmospheric CO2 concentration CO2 and climate change are expected to have a major effect on terrestrial ecosystem hydrological cycles and plant water stress in the coming decades. The present study investigates the potential responses of terrestrial ecosystem hydrological cycles and plant water stress across China to elevated CO2 and climate change in the twentieth and twenty-first centuries using the calibrated and validated Lund–Potsdam–Jena dynamic global vegetation model (LPJ-DGVM) and eight climate change scenarios. The spatiotemporal change patterns of estimated evapotranspiration (ET), soil moisture, runoff, and plant water stress due to climate change and elevated CO2 are plotted singly and in combination. Positive future trends in ET, soil moisture, and runoff—although differing greatly among regions—are projected. Resultant plant water stress over China’s terrestrial ecosystem generally could be eased substantially through the twenty-first century under the climate scenarios driven by emission scenarios that consider economic concerns. By contrast, under the climate scenarios driven by emission scenarios that consider environmental concerns, plant water stress could be eased until 2060, then begin to fluctuate until 2100. The net impact of physiological and structural vegetation responses to elevated CO2 could result in an increasing trend in runoff in southern and northeastern China, and a decreasing trend in runoff in northern and northwestern China in the twentieth century. It is projected to reduce ET by 1.5 × 109 to 6.5 × 109 m3 yr−1 on average, and increase runoff by 1.0 × 109 to 5.4 × 109 m3 yr−1 during 2001–2100 across China’s terrestrial ecosystems, although the spatial change pattern could be quite diverse. These findings, in partial contradiction to previous results, present an improved understanding of transient responses of China’s terrestrial ecosystem hydrological cycles and plant water stress to climate change and elevated CO2 in the twentieth and twenty-first centuries.

Corresponding author address: Fulu Tao, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. E-mail: taofl@igsnrr.ac.cn

Abstract

Rising atmospheric CO2 concentration CO2 and climate change are expected to have a major effect on terrestrial ecosystem hydrological cycles and plant water stress in the coming decades. The present study investigates the potential responses of terrestrial ecosystem hydrological cycles and plant water stress across China to elevated CO2 and climate change in the twentieth and twenty-first centuries using the calibrated and validated Lund–Potsdam–Jena dynamic global vegetation model (LPJ-DGVM) and eight climate change scenarios. The spatiotemporal change patterns of estimated evapotranspiration (ET), soil moisture, runoff, and plant water stress due to climate change and elevated CO2 are plotted singly and in combination. Positive future trends in ET, soil moisture, and runoff—although differing greatly among regions—are projected. Resultant plant water stress over China’s terrestrial ecosystem generally could be eased substantially through the twenty-first century under the climate scenarios driven by emission scenarios that consider economic concerns. By contrast, under the climate scenarios driven by emission scenarios that consider environmental concerns, plant water stress could be eased until 2060, then begin to fluctuate until 2100. The net impact of physiological and structural vegetation responses to elevated CO2 could result in an increasing trend in runoff in southern and northeastern China, and a decreasing trend in runoff in northern and northwestern China in the twentieth century. It is projected to reduce ET by 1.5 × 109 to 6.5 × 109 m3 yr−1 on average, and increase runoff by 1.0 × 109 to 5.4 × 109 m3 yr−1 during 2001–2100 across China’s terrestrial ecosystems, although the spatial change pattern could be quite diverse. These findings, in partial contradiction to previous results, present an improved understanding of transient responses of China’s terrestrial ecosystem hydrological cycles and plant water stress to climate change and elevated CO2 in the twentieth and twenty-first centuries.

Corresponding author address: Fulu Tao, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. E-mail: taofl@igsnrr.ac.cn
Save