• Adler, R. F., , Huffman G. J. , , Bolvin D. T. , , Curtis S. , , and Nelkin E. J. , 2000: Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information. J. Appl. Meteor., 39, 20072023.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., , Joyce R. J. , , and Janowiak J. E. , 1994: IR techniques: GOES precipitation index. Remote Sens. Rev., 11, 107124.

  • Awaka, J., , Iguchi T. , , and Okamoto K. , 1998: Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. Proc. Eighth URSI Commission F Open Symp., Aveiro, Portugal, URSI, 143–146.

    • Search Google Scholar
    • Export Citation
  • Berg, W., , L’Ecuyer T. , , and Kummerow C. , 2006: Rainfall climate regimes: The relationship of regional regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454.

    • Search Google Scholar
    • Export Citation
  • Berg, W., , L’Ecuyer T. , , and Heever S. V. D. , 2008: Evidence for the impact of aerosols on the onset and microphysical properties of rainfall from a combination of satellite observations and cloud-resolving model simulations. J. Geophys. Res., 113, D14S23, doi:10.1029/2007JD009649.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , Zipser E. J. , , and Nesbitt S. W. , 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130, 769784.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , Goodman S. J. , , Boccippio D. J. , , Zipser E. J. , , and Nesbitt S. W. , 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133, 543566.

    • Search Google Scholar
    • Export Citation
  • Chen, G. T.-J., 2004: Research on the phenomena of Meiyu during the past quarter century: An overview. The East Asian Monsoon, C.-P. Chang, Ed., World Scientific Publishing, 357–403.

    • Search Google Scholar
    • Export Citation
  • Cunderlik, J. M., , and Ouarda T. B. M. J. , 2007: Regional flood-rainfall duration-frequency modeling at small ungaged sites. J. Hydrol., 345, doi:10.1016/j.jhydrol.2007.07.011.

    • Search Google Scholar
    • Export Citation
  • Falvey, M., , and Garreaud R. D. , 2005: Moisture variability over the South American altiplano during the South America Low Level Jet Experiment (SALLJEX) observing season. J. Geophys. Res., 110, D22105, doi:10.1029/2005JD006152.

    • Search Google Scholar
    • Export Citation
  • Goel, N. K., , Kurothe R. S. , , Mathur B. S. , , and Vogel R. M. , 2000: A derived flood frequency distribution for correlated rainfall intensity and duration. J. Hydrol., 228, 5667.

    • Search Google Scholar
    • Export Citation
  • Hall, T. J., , and Vonder Haar T. H. , 1999: The diurnal cycle of west Pacific deep convection and its relation to the spatial and temporal variation of tropical MCSs. J. Atmos. Sci., 56, 34013415.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , and Churchill D. D. , 1987: Mesoscale organization and cloud microphysics in a Bay of Bengal depression. J. Atmos. Sci., 44, 18451868.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , Wilton D. C. , , and Smull B. F. , 2007: Monsoon convection in the Himalayan region as seen by the TRMM precipitation radar. Quart. J. Roy. Meteor. Soc., 133, 13891411, doi:10.1002/qj.106.

    • Search Google Scholar
    • Export Citation
  • Huffman, G., , Adler R. , , Morrissey M. , , Bolvin D. , , Curtis S. , , Joyce R. , , McGavock B. , , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650.

    • Search Google Scholar
    • Export Citation
  • Huffman, G., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , Kozu T. , , Meneghini R. , , Awaka J. , , and Okamoto K. , 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , and Zipser E. J. , 2010: Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Climate, 23, 15261543.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., , Janowiak J. E. , , Arkin P. A. , , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , Barnes W. , , Kozu T. , , Shiue J. , , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , and Zipser E. J. , 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110, D23104, doi:10.1029/2005JD006063.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , and Zipser E. J. , 2008: Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations. Geophys. Res. Lett., 35, L04819, doi:10.1029/2007GL032437.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , and Zipser E. J. , 2009: “Warm rain” in the tropics: Seasonal and regional distribution based on 9 years of TRMM data. J. Climate, 22, 767779.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , Zipser E. J. , , and Nesbitt S. W. , 2007: Global distribution of tropical deep convection: Different perspectives using infrared and radar as the primary data source. J. Climate, 20, 489503.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , Zipser E. J. , , Cecil D. J. , , Nesbitt S. W. , , and Sherwood S. , 2008: A cloud and precipitation feature database from 9 years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , Williams E. , , Zipser E. J. , , and Burns G. , 2010: On the diurnal variations of global thunderstorms and the global atmospheric electrical circuit. J. Atmos. Sci., 67, 309323.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., , and Zipser E. J. , 1996: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124, 24172437.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., , Famiglietti J. S. , , and Zipser E. J. , 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-GHz ice-scattering signature. J. Appl. Meteor., 38, 596606.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , and Zipser E. J. , 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , Zipser E. J. , , and Cecil D. J. , 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , Zipser E. J. , , and Kummerow C. D. , 2004: An examination of version 5 rainfall estimates from the TRMM microwave imager, precipitation radar, and rain gauges on global, regional, and storm scales. J. Appl. Meteor., 43, 10161036.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , Cifelli R. , , and Rutledge S. A. , 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., , and Henderson R. W. , 1986: Global distribution of midnight lightning: September 1977 to August 1978. Mon. Wea. Rev., 114, 26402653.

    • Search Google Scholar
    • Export Citation
  • Salio, P., , Nicolini M. , , and Zipser E. J. , 2007: Mesoscale convective systems over southeastern South America and their relationship with the South America Low-Level Jet. Mon. Wea. Rev., 135, 12901309.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , and Houze R. A. Jr., 2003: The TRMM precipitation radar’s view of shallow, isolated rain. J. Appl. Meteor., 42, 15191524.

    • Search Google Scholar
    • Export Citation
  • Seo, E., , Sohn B. , , and Liu G. , 2007: How TRMM precipitation radar and microwave imager retrieved rain rates differ. Geophys. Res. Lett., 34, L24803, doi:10.1029/2007GL032331.

    • Search Google Scholar
    • Export Citation
  • Skok, G., , Tribbia J. , , Rakovec J. , , and Brown B. , 2009: Object-based analysis of satellite-derived precipitation systems over the low- and midlatitude Pacific Ocean. Mon. Wea. Rev., 137, 31963218.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., , Goodman H. M. , , and Hood R. E. , 1989: Precipitation retrieval over land and ocean with SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., , and Zipser E. J. , 2001: Lightning and SSM/I ice scattering MCSs in the global tropics. J. Appl. Meteor., 40, 9831002.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., , Zipser E. J. , , Cecil D. J. , , and Nesbitt S. W. , 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics. Mon. Wea. Rev., 130, 802824.

    • Search Google Scholar
    • Export Citation
  • Velasco, I., , and Fritsch J. M. , 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92, 95919613.

  • Wang, N.-Y., , Liu C. , , Ferraro R. , , Wolff D. , , Zipser E. J. , , and Kummerow C. , 2009: The TRMM 2A12 land precipitation product—Status and future plans. J. Meteor. Soc. Japan, 87A, 237253.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T., 1986: Some comments on passive microwave measurement of rain. Bull. Amer. Meteor. Soc., 67, 12261232.

  • Xu, W., , Zipser E. J. , , and Liu C. , 2009: Rainfall characteristics and convective properties of mei-yu precipitation systems over south China and Taiwan. Part I: TRMM observations. Mon. Wea. Rev., 137, 42614275.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M. K., , Furuzawa F. A. , , Higuchi A. , , and Nakamura K. , 2008: Comparison of diurnal variations in precipitation systems observed by TRMM PR, TMI, and VIRS. J. Climate, 21, 40114028.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., , and Slingo J. , 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801.

  • Zipser, E., , Cecil D. , , Liu C. , , Nesbitt S. W. , , and Yorty D. , 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 72 72 7
PDF Downloads 56 56 7

Rainfall Contributions from Precipitation Systems with Different Sizes, Convective Intensities, and Durations over the Tropics and Subtropics

View More View Less
  • 1 Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
© Get Permissions
Restricted access

Abstract

The rainfall contributions from precipitation features (PFs) with full spectra of different sizes and convective intensities over the tropics and subtropics are summarized using 12 yr of version 6 Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and Microwave Imager (TMI) observations. Regional, seasonal, and diurnal variations of the rainfall contributions from various PFs are shown, with the global distribution of the sizes, PR echo tops, maximum heights of 30 dBZ, and minimum TMI 85-GHz brightness temperatures of PFs above which contribute half of the rainfall in each 2° × 2° region. Though the results from radar and microwave observations generally agree with each other, some large differences exist over land. Seasonal variations of sizes and intensities of precipitation systems are found over the northeast Pacific, northern SPCZ, and some land areas in addition to the well-known monsoon regions. The diurnal cycles of rainfall over land and ocean are interpreted with the combinations of life cycles of various precipitation systems, using the diurnal variations of rainfall contributions from precipitation systems with different sizes and intensities. The long-duration rainfall events with more than four consecutive 3-h periods with rain at a grid point are identified from 11 yr of TRMM 3B42 products. These “12-h rain events” contribute a larger proportion of the total rainfall over ocean than over land. They are mostly correlated with precipitation systems with large sizes and intense convection. However, they can also be caused by some shallow persistent precipitation systems, such as those over the northeast slope of the Andes in Peru in spring and fall and over the west coast of India in summer.

Corresponding author address: Dr. Chuntao Liu, Department of Atmospheric Sciences, University of Utah, 135S 1460E, Rm. 819, Salt Lake City, UT 84112-0110. E-mail: liu.c.t@utah.edu

Abstract

The rainfall contributions from precipitation features (PFs) with full spectra of different sizes and convective intensities over the tropics and subtropics are summarized using 12 yr of version 6 Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and Microwave Imager (TMI) observations. Regional, seasonal, and diurnal variations of the rainfall contributions from various PFs are shown, with the global distribution of the sizes, PR echo tops, maximum heights of 30 dBZ, and minimum TMI 85-GHz brightness temperatures of PFs above which contribute half of the rainfall in each 2° × 2° region. Though the results from radar and microwave observations generally agree with each other, some large differences exist over land. Seasonal variations of sizes and intensities of precipitation systems are found over the northeast Pacific, northern SPCZ, and some land areas in addition to the well-known monsoon regions. The diurnal cycles of rainfall over land and ocean are interpreted with the combinations of life cycles of various precipitation systems, using the diurnal variations of rainfall contributions from precipitation systems with different sizes and intensities. The long-duration rainfall events with more than four consecutive 3-h periods with rain at a grid point are identified from 11 yr of TRMM 3B42 products. These “12-h rain events” contribute a larger proportion of the total rainfall over ocean than over land. They are mostly correlated with precipitation systems with large sizes and intense convection. However, they can also be caused by some shallow persistent precipitation systems, such as those over the northeast slope of the Andes in Peru in spring and fall and over the west coast of India in summer.

Corresponding author address: Dr. Chuntao Liu, Department of Atmospheric Sciences, University of Utah, 135S 1460E, Rm. 819, Salt Lake City, UT 84112-0110. E-mail: liu.c.t@utah.edu
Save