• Anagnostou, E. N., , Maggioni V. , , Nikolopoulos E. I. , , Meskele T. , , Hossain F. , , and Papadopoulos A. , 2010: Benchmarking high-resolution global satellite rainfall products to radar and rain gauge rainfall estimates. IEEE Trans. Geosci. Remote Sens., 48, 16671683.

    • Search Google Scholar
    • Export Citation
  • Bellerby, T., , and Sun J. , 2005: Probabilistic and ensemble representations of the uncertainty in IR/microwave rainfall product. J. Hydrometeor., 6, 10321044.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , and Ball J. H. , 1998: FIFE surface climate and site-average dataset 1987–89. J. Atmos. Sci., 55, 10911108.

  • Bloom, S., and Coauthors, 2005: Documentation and validation of the Goddard Earth Observing System (GEOS) Data Assimilation System: Version 4. Vol. 26, Series on Global Modeling Data Assimilation Tech. Rep. 104606, 187 pp. [Available from Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD 20771.]

    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2004: The Rhone aggregation land surface scheme intercomparison project: An overview. J. Climate, 17, 187208.

    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., and Coauthors, 2003: Simulation of high latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e) 1: Experiment description and summary intercomparisons. Global Planet. Change, 38, 130.

    • Search Google Scholar
    • Export Citation
  • Brock, F. V., , Crawford K. C. , , Elliott R. L. , , Cuperus G. W. , , Stadler S. J. , , Johnson H. L. , , and Eilts M. D. , 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519.

    • Search Google Scholar
    • Export Citation
  • Carpenter, T. M., , Sperfslage J. A. , , Georgakakos K. P. , , Sweeney T. , , and Fread D. L. , 1999: National threshold runoff estimation utilizing GIS in support of operational flash flood warning system. J. Hydrol., 224, 2144.

    • Search Google Scholar
    • Export Citation
  • Crow, W. T., , and Wood E. F. , 2003: The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Adv. Water Resour., 26, 137149.

    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., , Reichle R. H. , , Houser P. R. , , Pauwels V. R. N. , , and Verhoest N. E. C. , 2007: Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter. Water Resour. Res., 43, W09410, doi:10.1029/2006WR005449.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010a: The Soil Moisture Active and Passive (SMAP) Mission. Proc. IEEE, 98, 704716, doi:10.1109/JPROC.2010.2043918.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., , Reichle R. H. , , Koster R. D. , , and Crow W. T. , 2010b: Performance metrics for soil moisture retrievals and application requirements. J. Hydrometeor., 11, 832840.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., 1998: WSR-88D Polar-to-HRAP mapping. National Weather Service, Hydrologic Research Laboratory Tech. Memo., 34 pp. [Available online at http://www.nws.noaa.gov/oh/hrl/papers/wsr88d/hrapmap.pdf.]

    • Search Google Scholar
    • Export Citation
  • Hossain, F., , and Anagnostou E. N. , 2005: Numerical investigation of the impact of uncertainties in satellite rainfall estimation and land surface model parameters on simulation of soil moisture. Adv. Water Resour., 28, 13361350.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., , and Anagnostou E. N. , 2006a: Assessment of a multi-dimensional satellite rainfall error model for ensemble generation of satellite rainfall data. Geosci. Remote Sens. Lett., 3, 419423.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., , and Anagnostou E. N. , 2006b: A two-dimensional satellite rainfall error model. IEEE Trans. Geosci. Remote Sens., 44, 15111522.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., , Anagnostou E. N. , , Dinku T. , , and Borga M. , 2004: Hydrological model sensitivity to parameter and radar rainfall estimation uncertainty. Hydrol. Processes, 18, 32773291.

    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., 1993: Measuring surface soil moisture using passive microwave remote sensing. Hydrol. Processes, 7, 139152.

  • Joyce, R. J., , Janowiak J. E. , , Arkin P. A. , , and Xie P. P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , Suarez J. , , Ducharne A. , , Stieglitz M. , , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Coauthors, 2006: A remote sensing observatory for hydrologic sciences: A genesis for scaling to continental hydrology. Water Resour. Res., 42, W07301, doi:10.1029/2005WR004435.

    • Search Google Scholar
    • Export Citation
  • Martina, M. L. V., , Todini E. , , and Libralon A. , 2005: A Bayesian decision approach to rainfall thresholds based flood warning. Hydrol. Earth Syst. Sci. Discuss., 2, 26632706.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., and Coauthors, 2003: Simulation of high latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e) 2: Comparison of model results with observations. Global Planet. Change, 38, 3153.

    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., , Jackson T. J. , , Lakshmi V. , , Chan T. K. , , and Nghiem S. V. , 2003: Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 215229.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , McLaughlin D. , , and Entekhabi D. , 2002a: Hydrological data assimilation with the ensemble Kalman filter. Mon. Wea. Rev., 130, 103114.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , Walker J. P. , , Koster R. D. , , and Houser P. R. , 2002b: Extended versus ensemble Kalman filtering for land data assimilation. J. Hydrometeor., 3, 728740.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , Koster R. D. , , Dong J. , , and Berg A. A. , 2004: Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J. Hydrometeor., 5, 430442.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , Koster R. D. , , Liu P. , , Mahanama S. P. P. , , Njoku E. G. , , and Owe M. , 2007: Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSRE) and the Scanning Multichannel Microwave Radiometer (SMMR). J. Geophys. Res., 112, D09108, doi:10.1029/2006JD008033.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , Crow W. T. , , and Keppenne C. L. , 2008: An adaptive ensemble Kalman filter for soil moisture data assimilation. Water Resour. Res., 44, W03423, doi:10.1029/2007WR006357.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , Bosilovich M. G. , , Crow W. T. , , Koster R. D. , , Kumar S. V. , , Mahanama S. P. P. , , and Zaitchik B. F. , 2009: Recent advances in land data assimilation at the NASA Global Modeling and Assimilation Office. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, S. K. Park and L. Xu, Eds., Springer Verlag, 407–428.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of Versions 5.0.1, 5.1.0, and 5.2.0. Technical Report Series on Global Modeling and Data Assimilation, NASA/TM–2008–104606, Vol. 27, NASA, 118 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/GEOS5_104606-Vol27.pdf.]

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 82 82 13
PDF Downloads 14 14 3

The Effect of Satellite Rainfall Error Modeling on Soil Moisture Prediction Uncertainty

View More View Less
  • 1 Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut
  • | 2 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut
© Get Permissions
Restricted access

Abstract

This study assesses the impact of satellite rainfall error structure on soil moisture simulations with the NASA Catchment land surface model. Specifically, the study contrasts a complex satellite rainfall error model (SREM2D) with the standard rainfall error model used to generate ensembles of rainfall fields as part of the Land Data Assimilation System (LDAS) developed at the NASA Global Modeling and Assimilation Office. The study is conducted in the Oklahoma region, which offers good coverage by weather radars and in situ meteorological and soil moisture measurement stations. The authors used high-resolution (25 km, 3-hourly) satellite rainfall fields derived from the NOAA/Climate Prediction Center morphing (CMORPH) global satellite product and rain gauge–calibrated radar rainfall fields (considered as the reference rainfall). The LDAS simulations are evaluated in terms of rainfall and soil moisture error. Comparisons of rainfall ensembles generated by SREM2D and LDAS against reference rainfall show that both rainfall error models preserve the satellite rainfall error characteristics across a range of spatial scales. The error structure in SREM2D is shown to generate rainfall replicates with higher variability that better envelop the reference rainfall than those generated by the LDAS error model. Likewise, the SREM2D-generated soil moisture ensemble shows slightly higher spread than the LDAS-generated ensemble and thus better encapsulates the reference soil moisture. Soil moisture errors, however, are less sensitive than precipitation errors to the complexity of the precipitation error modeling approach because soil moisture dynamics are dissipative and nonlinear.

Corresponding author address: Viviana Maggioni, Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269. E-mail: viviana@engr.uconn.edu

Abstract

This study assesses the impact of satellite rainfall error structure on soil moisture simulations with the NASA Catchment land surface model. Specifically, the study contrasts a complex satellite rainfall error model (SREM2D) with the standard rainfall error model used to generate ensembles of rainfall fields as part of the Land Data Assimilation System (LDAS) developed at the NASA Global Modeling and Assimilation Office. The study is conducted in the Oklahoma region, which offers good coverage by weather radars and in situ meteorological and soil moisture measurement stations. The authors used high-resolution (25 km, 3-hourly) satellite rainfall fields derived from the NOAA/Climate Prediction Center morphing (CMORPH) global satellite product and rain gauge–calibrated radar rainfall fields (considered as the reference rainfall). The LDAS simulations are evaluated in terms of rainfall and soil moisture error. Comparisons of rainfall ensembles generated by SREM2D and LDAS against reference rainfall show that both rainfall error models preserve the satellite rainfall error characteristics across a range of spatial scales. The error structure in SREM2D is shown to generate rainfall replicates with higher variability that better envelop the reference rainfall than those generated by the LDAS error model. Likewise, the SREM2D-generated soil moisture ensemble shows slightly higher spread than the LDAS-generated ensemble and thus better encapsulates the reference soil moisture. Soil moisture errors, however, are less sensitive than precipitation errors to the complexity of the precipitation error modeling approach because soil moisture dynamics are dissipative and nonlinear.

Corresponding author address: Viviana Maggioni, Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269. E-mail: viviana@engr.uconn.edu
Save