• Beljaars, A. C. M., , and Holtslag A. A. M. , 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W. H., 1982: Evaporation into the Atmosphere: Theory, History, and Applications. D. Reidel, 299 pp.

  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Garratt, J. R., , and Francey R. J. , 1978: Bulk characteristics of heat transfer in the unstable, baroclinic atmospheric boundary layer. Bound.-Layer Meteor., 15, 399421.

    • Search Google Scholar
    • Export Citation
  • Högström, U., 1996: Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteor., 78, 215246.

  • Kaimal, J. C., , and Finnigan J. J. , 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.

    • Search Google Scholar
    • Export Citation
  • Kanda, M., , Kanega M. , , Kawai T. , , Moriwaki R. , , and Sugawara H. , 2007: Roughness lengths for momentum and heat derived from outdoor urban scale models. J. Appl. Meteor. Climatol., 46, 10671079.

    • Search Google Scholar
    • Export Citation
  • Li, G., , and Tao H. , 2005: Characteristics of bulk transfer coefficient in precipitation processes of Tibetan plateau. Plateau Meteor., 24, 577584.

    • Search Google Scholar
    • Export Citation
  • Li, G., , Duan T. , , Haginoya S. , , and Chen L. , 2001: Estimates of the bulk transfer coefficients and surface fluxes over the Tibetan Plateau using AWS data. J. Meteor. Soc. Japan, 79, 625635.

    • Search Google Scholar
    • Export Citation
  • Li, G., , Zhao B. , , and Lu J. , 2002: Characteristics of bulk transfer coefficient over the Tibetan Plateau. Acta Meteor. Sin., 60, 6066.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., , Tsukamoto O. , , Wang J. , , Ishikawa H. , , and Tamagawa I. , 2002: Analysis of aerodynamic and thermodynamic parameters on the grassy marshland surface of Tibetan Plateau. Prog. Nat. Sci., 12, 3640.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., , Menenti M. , , Feddes R. , , and Wang J. , 2008: Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths. J. Geophys. Res., 113, D08113, doi:10.1029/2007JD009124.

    • Search Google Scholar
    • Export Citation
  • Miao, M., , Cao H. , , and Ji J. , 1998: Analysis of turbulent characteristics in atmospheric boundary layer over the Qinghai-Xizang Plateau. Plateau Meteor., 17, 356363.

    • Search Google Scholar
    • Export Citation
  • Owen, P. R., , and Thomson W. R. , 1963: Heat transfer across rough surfaces. J. Fluid Mech., 15, 321334.

  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861.

    • Search Google Scholar
    • Export Citation
  • Sheppard, P. A., 1958: Transfer across the earth’s surface and through the air above. Quart. J. Roy. Meteor. Soc., 84, 205224.

  • Su, Z., , Schmugge T. , , Kustas W. P. , , and Massman W. J. , 2001: An evaluation of two models for estimation of roughness height for heat transfer between the land surface and the atmosphere. J. Appl. Meteor., 40, 19331951.

    • Search Google Scholar
    • Export Citation
  • Verhoef, A., , De Bruin H. A. R. , , and Van Den Hurk B. J. J. M. , 1997: Some practical notes on the parameter kB−1 for sparse vegetation. J. Appl. Meteor., 36, 560572.

    • Search Google Scholar
    • Export Citation
  • Webb, E. K., , Pearman G. I. , , and Leuning R. , 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106, 85100.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., , Oncley S. P. , , and Stage S. A. , 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127150.

  • Yang, K., , Tamai N. , , and Koike T. , 2001: Analytical solution of surface layer similarity equations. J. Appl. Meteor., 40, 16471653.

  • Yang, K., , Koike T. , , Fujii H. , , Tamagwa K. , , and Hirose N. , 2002: Improvement of surface flux parameterizations with a turbulence-related length. Quart. J. Roy. Meteor. Soc., 128, 20732087.

    • Search Google Scholar
    • Export Citation
  • Yang, K., , Koike T. , , and Yang D. , 2003: Surface flux parameterization in the Tibetan Plateau. Bound.-Layer Meteor., 106, 245262.

  • Yang, K., and Coauthors, 2007: Auto-calibration system developed to assimilate AMSR-E data into a land surface mode for estimating soil moisture and the surface energy budget. J. Meteor. Soc. Japan, 85, 229242.

    • Search Google Scholar
    • Export Citation
  • Yang, K., and Coauthors, 2008: Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization. J. Appl. Meteor. Climatol., 47, 276290.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., , and Dickinson R. E. , 1998: Effect of surface sublayer on surface skin temperature and fluxes. J. Climate, 11, 537550.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 38 38 8
PDF Downloads 15 15 6

Characteristics of Land–Atmosphere Interaction Parameters over the Tibetan Plateau

View More View Less
  • 1 Institute of Tibetan Plateau Research, and Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • 2 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

In this study, eddy covariance flux data collected from three research stations on the Tibetan Plateau—Qomolangma for Atmospheric and Environmental Observation and Research, Nam Co for Multisphere Observation and Research, and Southeast Tibet Station for Alpine Environment Observation and Research, Chinese Academy of Sciences—are used to analyze the variation of momentum transfer coefficient (CD), heat transfer coefficient (CH), aerodynamic roughness length (z0m), thermal roughness length (z0h), and excess resistance to heat transfer (kB−1, where k is von Kármán’s constant and B−1 is a non-dimensional bulk parameter). The following results are found. The monthly average surface roughness, bulk transfer coefficient, and excess resistance to heat transfer at all three stations are obtained. The values of average heat bulk transfer coefficients are larger than those of average momentum bulk transfer coefficients at all three stations. The parameter kB−1 exhibits clear diurnal variations with lower values in the night and higher values in the daytime, especially in the afternoon. Negative values of kB−1 are often observed in the night for relatively smooth surfaces on the Tibetan Plateau, indicating that heat transfer efficiency may exceed that of momentum transfer.

Corresponding author address: Dr. Yaoming Ma, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China. E-mail: ymma@itpcas.ac.cn

Abstract

In this study, eddy covariance flux data collected from three research stations on the Tibetan Plateau—Qomolangma for Atmospheric and Environmental Observation and Research, Nam Co for Multisphere Observation and Research, and Southeast Tibet Station for Alpine Environment Observation and Research, Chinese Academy of Sciences—are used to analyze the variation of momentum transfer coefficient (CD), heat transfer coefficient (CH), aerodynamic roughness length (z0m), thermal roughness length (z0h), and excess resistance to heat transfer (kB−1, where k is von Kármán’s constant and B−1 is a non-dimensional bulk parameter). The following results are found. The monthly average surface roughness, bulk transfer coefficient, and excess resistance to heat transfer at all three stations are obtained. The values of average heat bulk transfer coefficients are larger than those of average momentum bulk transfer coefficients at all three stations. The parameter kB−1 exhibits clear diurnal variations with lower values in the night and higher values in the daytime, especially in the afternoon. Negative values of kB−1 are often observed in the night for relatively smooth surfaces on the Tibetan Plateau, indicating that heat transfer efficiency may exceed that of momentum transfer.

Corresponding author address: Dr. Yaoming Ma, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China. E-mail: ymma@itpcas.ac.cn
Save