An Evaluation of Five ARW-WRF Microphysics Schemes Using Synthetic GOES Imagery for an Atmospheric River Event Affecting the California Coast

Isidora Jankov Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
NOAA/ESRL/Global Systems Division, Boulder, Colorado

Search for other papers by Isidora Jankov in
Current site
Google Scholar
PubMed
Close
,
Lewis D. Grasso Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Lewis D. Grasso in
Current site
Google Scholar
PubMed
Close
,
Manajit Sengupta Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Manajit Sengupta in
Current site
Google Scholar
PubMed
Close
,
Paul J. Neiman NOAA/ESRL/Physical Sciences Division, Boulder, Colorado

Search for other papers by Paul J. Neiman in
Current site
Google Scholar
PubMed
Close
,
Dusanka Zupanski Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Dusanka Zupanski in
Current site
Google Scholar
PubMed
Close
,
Milija Zupanski Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Milija Zupanski in
Current site
Google Scholar
PubMed
Close
,
Daniel Lindsey Regional and Mesoscale Meteorology Branch, Colorado State University, Fort Collins, Colorado
Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Daniel Lindsey in
Current site
Google Scholar
PubMed
Close
,
Donald W. Hillger Regional and Mesoscale Meteorology Branch, Colorado State University, Fort Collins, Colorado
Regional and Mesoscale Meteorology Branch, Colorado State University, Fort Collins, Colorado

Search for other papers by Donald W. Hillger in
Current site
Google Scholar
PubMed
Close
,
Daniel L. Birkenheuer NOAA/ESRL/Global Systems Division, Boulder, Colorado

Search for other papers by Daniel L. Birkenheuer in
Current site
Google Scholar
PubMed
Close
,
Renate Brummer Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
NOAA/ESRL/Global Systems Division, Boulder, Colorado

Search for other papers by Renate Brummer in
Current site
Google Scholar
PubMed
Close
, and
Huiling Yuan School of Atmospheric Sciences, and Key Laboratory of Mesoscale Severe Weather/Ministry of Education, Nanjing University, Nanjing, China

Search for other papers by Huiling Yuan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The main purpose of the present study is to assess the value of synthetic satellite imagery as a tool for model evaluation performance in addition to more traditional approaches. For this purpose, synthetic GOES-10 imagery at 10.7 μm was produced using output from the Advanced Research Weather Research and Forecasting (ARW-WRF) numerical model. Use of synthetic imagery is a unique method to indirectly evaluate the performance of various microphysical schemes available within the ARW-WRF. In the present study, a simulation of an atmospheric river event that occurred on 30 December 2005 was used. The simulations were performed using the ARW-WRF numerical model with five different microphysical schemes [Lin, WRF single-moment 6 class (WSM6), Thompson, Schultz, and double-moment Morrison]. Synthetic imagery was created and scenes from the simulations were statistically compared with observations from the 10.7-μm band of the GOES-10 imager using a histogram-based technique. The results suggest that synthetic satellite imagery is useful in model performance evaluations as a complementary metric to those used traditionally. For example, accumulated precipitation analyses and other commonly used fields in model evaluations suggested a good agreement among solutions from various microphysical schemes, while the synthetic imagery analysis pointed toward notable differences in simulations of clouds among the microphysical schemes.

Corresponding author address: Isidora Jankov, 325 Broadway, GSD7, Boulder, CO 80305. E-mail: isidora.jankov@noaa.gov

Abstract

The main purpose of the present study is to assess the value of synthetic satellite imagery as a tool for model evaluation performance in addition to more traditional approaches. For this purpose, synthetic GOES-10 imagery at 10.7 μm was produced using output from the Advanced Research Weather Research and Forecasting (ARW-WRF) numerical model. Use of synthetic imagery is a unique method to indirectly evaluate the performance of various microphysical schemes available within the ARW-WRF. In the present study, a simulation of an atmospheric river event that occurred on 30 December 2005 was used. The simulations were performed using the ARW-WRF numerical model with five different microphysical schemes [Lin, WRF single-moment 6 class (WSM6), Thompson, Schultz, and double-moment Morrison]. Synthetic imagery was created and scenes from the simulations were statistically compared with observations from the 10.7-μm band of the GOES-10 imager using a histogram-based technique. The results suggest that synthetic satellite imagery is useful in model performance evaluations as a complementary metric to those used traditionally. For example, accumulated precipitation analyses and other commonly used fields in model evaluations suggested a good agreement among solutions from various microphysical schemes, while the synthetic imagery analysis pointed toward notable differences in simulations of clouds among the microphysical schemes.

Corresponding author address: Isidora Jankov, 325 Broadway, GSD7, Boulder, CO 80305. E-mail: isidora.jankov@noaa.gov
Save
  • Asai, T., 1965: A numerical study of the air-mass transformation over the Japan Sea in winter. J. Meteor. Soc. Japan, 43, 115.

  • Bao, J.-W., Michelson S. A. , Neiman P. J. , Ralph F. M. , and Wilczak J. M. , 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., and Pinty J.-P. , 2006: Evaluation of a cirrus parameterization with Meteosat Second Generation observations. Geophys. Res. Lett., 33, L03815, doi:10.1029/2005GL024725.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and Sun W.-Y. , 2002: A one-dimensional time-dependent cloud model. J. Meteor. Soc. Japan, 80, 99118.

  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529.

  • Deeter, M., and Evans K. F. , 1998: A hybrid Eddington-single scattering radiative transfer model for computing radiances from thermally emitting atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 60, 635648.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., and Greenwald T. J. , 2004: Analysis of 10.7-μm brightness temperatures of a simulated thunderstorm with two-moment microphysics. Mon. Wea. Rev., 132, 815825.

    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., Sengupta M. , Dostalek J. F. , Brummer R. , and DeMaria M. , 2008: Synthetic satellite imagery for current and future environmental satellites. Int. J. Remote Sens., 29, 43734384.

    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., Sengupta M. , and DeMaria M. , 2010: Comparison between observed and synthetic 6.5 and 10.7 μm GOES-12 imagery of thunderstorms that occurred on 8 May 2003. Int. J. Remote Sens., 31, 647663.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., Hertenstein R. , and Vukićević T. , 2002: An all-weather observational operator for radiance data assimilation with mesoscale forecast models. Mon. Wea. Rev., 130, 18821897.

    • Search Google Scholar
    • Export Citation
  • Hollinger, J. P., Peirce J. L. , and Poe G. A. , 1990: SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28, 781790.

  • Hong, S.-Y., and Lim J.-O. J. , 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Juang H.-M. H. , and Zhao Q. , 1998: Implementation of prognostic cloud scheme for a regional spectral model. Mon. Wea. Rev., 126, 26212639.

    • Search Google Scholar
    • Export Citation
  • Jankov, I., Bao J.-W. , Neiman P. J. , Schultz P. J. , Yuan H. , and White A. B. , 2009: Evaluation and comparison of microphysical algorithms in ARW-WRF model simulations of atmospheric river events affecting the California coast. J. Hydrometeor., 10, 847870.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Lin, Y.-L., Farley R. D. , and Orville H. D. , 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • McMillin, L. M., Crone L. J. , and Kleespies T. J. , 1995: Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach. Appl. Opt., 34, 83968399.

    • Search Google Scholar
    • Export Citation
  • Michalakes, J., Dudhia J. , Gill D. , Klemp J. , and Skamarock W. , 1998: Design of a next-generation regional weather research and forecast model. Towards Teracomputing, W. Zwieflhofer and N. Kreitz, Eds., World Scientific, 117–124.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 2000: Parameterization of the Mie extinction and absorption coefficients for water clouds. J. Atmos. Sci., 57, 13111326.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiation transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Morcrette J.-J., 1991: Evaluation of model-generated cloudiness: Satellite-observed and model-generated diurnal variability of brightness temperatures. Mon. Wea. Rev., 119, 12051224.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and Pinto J. O. , 2005: Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci., 62, 36833704.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and Pinto J. O. , 2006: Intercomparison of bulk microphysics scheme in mesoscale simulations of springtime Arctic mixed-phase stratiform clouds. Mon. Wea. Rev., 134, 18801900.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Kuo Y.-H. , Wee T.-K. , Ma Z. , Taylor G. H. , and Dettinger M. D. , 2008a: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Lundquist J. D. , and Dettinger M. D. , 2008b: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., Greenwald T. J. , Sieglaff J. , and Huang H.-L. , 2009: Validation of a large-scale simulated brightness temperature dataset using SEVIRI satellite observations. J. Appl. Meteor. Climatol., 48, 16131626.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Wick G. A. , 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Rotunno R. , 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Wick G. A. , Gutman S. I. , Dettinger M. D. , Cayan C. R. , and White A. B. , 2006: Flooding on California’s Russian River: The role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., Lin Y.-L. , and Rotunno R. , 2008: Dynamic forcing and mesoscale variability of heavy precipitation events over the Sierra Nevada mountains. Mon. Wea. Rev., 136, 6277.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and Hobbs P. V. , 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972.

    • Search Google Scholar
    • Export Citation
  • Schultz, P. J., 1995: An explicit cloud parameterization for optional numerical weather prediction. Mon. Wea. Rev., 123, 33313343.

  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , Wang W. , and Powers J. G. , 2007: A description of the advanced research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, B. L., Yuter S. E. , Neiman P. J. , and Kingsmill D. E. , 2010: Water vapor fluxes and orographic precipitation over northern California associated with a land-falling atmospheric river. Mon. Wea. Rev., 138, 74100.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., Simpson J. , and McCumber M. , 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231235.

  • Thompson, G., Rasmussen R. M. , and Manning K. , 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542.

    • Search Google Scholar
    • Export Citation
  • Troen, I., and Mahrt L. , 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 47, 129148.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., Cotton W. R. , Meyers M. P. , and Harrington J. Y. , 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38, 2962.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and Skamarock W. C. , 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 810 217 15
PDF Downloads 573 155 9