Abstract
The main purpose of the present study is to assess the value of synthetic satellite imagery as a tool for model evaluation performance in addition to more traditional approaches. For this purpose, synthetic GOES-10 imagery at 10.7 μm was produced using output from the Advanced Research Weather Research and Forecasting (ARW-WRF) numerical model. Use of synthetic imagery is a unique method to indirectly evaluate the performance of various microphysical schemes available within the ARW-WRF. In the present study, a simulation of an atmospheric river event that occurred on 30 December 2005 was used. The simulations were performed using the ARW-WRF numerical model with five different microphysical schemes [Lin, WRF single-moment 6 class (WSM6), Thompson, Schultz, and double-moment Morrison]. Synthetic imagery was created and scenes from the simulations were statistically compared with observations from the 10.7-μm band of the GOES-10 imager using a histogram-based technique. The results suggest that synthetic satellite imagery is useful in model performance evaluations as a complementary metric to those used traditionally. For example, accumulated precipitation analyses and other commonly used fields in model evaluations suggested a good agreement among solutions from various microphysical schemes, while the synthetic imagery analysis pointed toward notable differences in simulations of clouds among the microphysical schemes.