• Asai, T., 1965: A numerical study of the air-mass transformation over the Japan Sea in winter. J. Meteor. Soc. Japan, 43, 115.

  • Bao, J.-W., , Michelson S. A. , , Neiman P. J. , , Ralph F. M. , , and Wilczak J. M. , 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., , and Pinty J.-P. , 2006: Evaluation of a cirrus parameterization with Meteosat Second Generation observations. Geophys. Res. Lett., 33, L03815, doi:10.1029/2005GL024725.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., , and Sun W.-Y. , 2002: A one-dimensional time-dependent cloud model. J. Meteor. Soc. Japan, 80, 99118.

  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529.

  • Deeter, M., , and Evans K. F. , 1998: A hybrid Eddington-single scattering radiative transfer model for computing radiances from thermally emitting atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 60, 635648.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., , and Greenwald T. J. , 2004: Analysis of 10.7-μm brightness temperatures of a simulated thunderstorm with two-moment microphysics. Mon. Wea. Rev., 132, 815825.

    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., , Sengupta M. , , Dostalek J. F. , , Brummer R. , , and DeMaria M. , 2008: Synthetic satellite imagery for current and future environmental satellites. Int. J. Remote Sens., 29, 43734384.

    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., , Sengupta M. , , and DeMaria M. , 2010: Comparison between observed and synthetic 6.5 and 10.7 μm GOES-12 imagery of thunderstorms that occurred on 8 May 2003. Int. J. Remote Sens., 31, 647663.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., , Hertenstein R. , , and Vukićević T. , 2002: An all-weather observational operator for radiance data assimilation with mesoscale forecast models. Mon. Wea. Rev., 130, 18821897.

    • Search Google Scholar
    • Export Citation
  • Hollinger, J. P., , Peirce J. L. , , and Poe G. A. , 1990: SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28, 781790.

  • Hong, S.-Y., , and Lim J.-O. J. , 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., , Juang H.-M. H. , , and Zhao Q. , 1998: Implementation of prognostic cloud scheme for a regional spectral model. Mon. Wea. Rev., 126, 26212639.

    • Search Google Scholar
    • Export Citation
  • Jankov, I., , Bao J.-W. , , Neiman P. J. , , Schultz P. J. , , Yuan H. , , and White A. B. , 2009: Evaluation and comparison of microphysical algorithms in ARW-WRF model simulations of atmospheric river events affecting the California coast. J. Hydrometeor., 10, 847870.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Lin, Y.-L., , Farley R. D. , , and Orville H. D. , 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • McMillin, L. M., , Crone L. J. , , and Kleespies T. J. , 1995: Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach. Appl. Opt., 34, 83968399.

    • Search Google Scholar
    • Export Citation
  • Michalakes, J., , Dudhia J. , , Gill D. , , Klemp J. , , and Skamarock W. , 1998: Design of a next-generation regional weather research and forecast model. Towards Teracomputing, W. Zwieflhofer and N. Kreitz, Eds., World Scientific, 117–124.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 2000: Parameterization of the Mie extinction and absorption coefficients for water clouds. J. Atmos. Sci., 57, 13111326.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , Taubman S. J. , , Brown P. D. , , Iacono M. J. , , and Clough S. A. , 1997: Radiation transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Morcrette J.-J., 1991: Evaluation of model-generated cloudiness: Satellite-observed and model-generated diurnal variability of brightness temperatures. Mon. Wea. Rev., 119, 12051224.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and Pinto J. O. , 2005: Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci., 62, 36833704.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and Pinto J. O. , 2006: Intercomparison of bulk microphysics scheme in mesoscale simulations of springtime Arctic mixed-phase stratiform clouds. Mon. Wea. Rev., 134, 18801900.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , Ralph F. M. , , Wick G. A. , , Kuo Y.-H. , , Wee T.-K. , , Ma Z. , , Taylor G. H. , , and Dettinger M. D. , 2008a: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , Ralph F. M. , , Wick G. A. , , Lundquist J. D. , , and Dettinger M. D. , 2008b: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., , Greenwald T. J. , , Sieglaff J. , , and Huang H.-L. , 2009: Validation of a large-scale simulated brightness temperature dataset using SEVIRI satellite observations. J. Appl. Meteor. Climatol., 48, 16131626.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , Neiman P. J. , , and Wick G. A. , 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , Neiman P. J. , , and Rotunno R. , 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , Neiman P. J. , , Wick G. A. , , Gutman S. I. , , Dettinger M. D. , , Cayan C. R. , , and White A. B. , 2006: Flooding on California’s Russian River: The role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., , Lin Y.-L. , , and Rotunno R. , 2008: Dynamic forcing and mesoscale variability of heavy precipitation events over the Sierra Nevada mountains. Mon. Wea. Rev., 136, 6277.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., , and Hobbs P. V. , 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972.

    • Search Google Scholar
    • Export Citation
  • Schultz, P. J., 1995: An explicit cloud parameterization for optional numerical weather prediction. Mon. Wea. Rev., 123, 33313343.

  • Skamarock, W. C., , Klemp J. B. , , Dudhia J. , , Gill D. O. , , Barker D. M. , , Wang W. , , and Powers J. G. , 2007: A description of the advanced research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, B. L., , Yuter S. E. , , Neiman P. J. , , and Kingsmill D. E. , 2010: Water vapor fluxes and orographic precipitation over northern California associated with a land-falling atmospheric river. Mon. Wea. Rev., 138, 74100.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., , Simpson J. , , and McCumber M. , 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231235.

  • Thompson, G., , Rasmussen R. M. , , and Manning K. , 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542.

    • Search Google Scholar
    • Export Citation
  • Troen, I., , and Mahrt L. , 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 47, 129148.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., , Cotton W. R. , , Meyers M. P. , , and Harrington J. Y. , 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38, 2962.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., , and Skamarock W. C. , 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 153 153 41
PDF Downloads 127 127 36

An Evaluation of Five ARW-WRF Microphysics Schemes Using Synthetic GOES Imagery for an Atmospheric River Event Affecting the California Coast

View More View Less
  • 1 Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
  • 2 NOAA/ESRL/Global Systems Division, Boulder, Colorado
  • 3 NOAA/ESRL/Physical Sciences Division, Boulder, Colorado
  • 4 Regional and Mesoscale Meteorology Branch, Colorado State University, Fort Collins, Colorado
  • 5 School of Atmospheric Sciences, and Key Laboratory of Mesoscale Severe Weather/Ministry of Education, Nanjing University, Nanjing, China
© Get Permissions
Restricted access

Abstract

The main purpose of the present study is to assess the value of synthetic satellite imagery as a tool for model evaluation performance in addition to more traditional approaches. For this purpose, synthetic GOES-10 imagery at 10.7 μm was produced using output from the Advanced Research Weather Research and Forecasting (ARW-WRF) numerical model. Use of synthetic imagery is a unique method to indirectly evaluate the performance of various microphysical schemes available within the ARW-WRF. In the present study, a simulation of an atmospheric river event that occurred on 30 December 2005 was used. The simulations were performed using the ARW-WRF numerical model with five different microphysical schemes [Lin, WRF single-moment 6 class (WSM6), Thompson, Schultz, and double-moment Morrison]. Synthetic imagery was created and scenes from the simulations were statistically compared with observations from the 10.7-μm band of the GOES-10 imager using a histogram-based technique. The results suggest that synthetic satellite imagery is useful in model performance evaluations as a complementary metric to those used traditionally. For example, accumulated precipitation analyses and other commonly used fields in model evaluations suggested a good agreement among solutions from various microphysical schemes, while the synthetic imagery analysis pointed toward notable differences in simulations of clouds among the microphysical schemes.

Corresponding author address: Isidora Jankov, 325 Broadway, GSD7, Boulder, CO 80305. E-mail: isidora.jankov@noaa.gov

Abstract

The main purpose of the present study is to assess the value of synthetic satellite imagery as a tool for model evaluation performance in addition to more traditional approaches. For this purpose, synthetic GOES-10 imagery at 10.7 μm was produced using output from the Advanced Research Weather Research and Forecasting (ARW-WRF) numerical model. Use of synthetic imagery is a unique method to indirectly evaluate the performance of various microphysical schemes available within the ARW-WRF. In the present study, a simulation of an atmospheric river event that occurred on 30 December 2005 was used. The simulations were performed using the ARW-WRF numerical model with five different microphysical schemes [Lin, WRF single-moment 6 class (WSM6), Thompson, Schultz, and double-moment Morrison]. Synthetic imagery was created and scenes from the simulations were statistically compared with observations from the 10.7-μm band of the GOES-10 imager using a histogram-based technique. The results suggest that synthetic satellite imagery is useful in model performance evaluations as a complementary metric to those used traditionally. For example, accumulated precipitation analyses and other commonly used fields in model evaluations suggested a good agreement among solutions from various microphysical schemes, while the synthetic imagery analysis pointed toward notable differences in simulations of clouds among the microphysical schemes.

Corresponding author address: Isidora Jankov, 325 Broadway, GSD7, Boulder, CO 80305. E-mail: isidora.jankov@noaa.gov
Save