Climatology of Winter Orographic Precipitation over the Subtropical Central Andes and Associated Synoptic and Regional Characteristics

Maximiliano Viale Programa Regional de Meteorología, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT–CONICET, Mendoza, Argentina

Search for other papers by Maximiliano Viale in
Current site
Google Scholar
PubMed
Close
and
Mario N. Nuñez Centro de Investigaciones del Mar y la Atmósfera, CONICET-UBA, and Departamento de Ciencias de la Atmósfera y Océanos, Universidad de Buenos Aires, Buenos Aires, Argentina

Search for other papers by Mario N. Nuñez in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Winter orographic precipitation over the Andes between 30° and 37°S is examined using precipitation gauges in the mountains and adjacent lowlands. Because of the limited number of precipitation gauges, this paper focuses on the large-scale variation in cross-barrier precipitation and does not take into account the fine ridge–valley scale. The maximum amount of precipitation was observed on the windward slope of the mountain range below the crest, which was twice that observed on the low-windward side between 32.5° and 34°S. Toward the east of the crest, precipitation amounts drop sharply, generating a strong cross-barrier gradient. The rain shadow effect is greater in the north (32°–34.5°S) than in the south (35°–36.5°S) of the low-lee side, which is probably due to more baroclinic activity in southernmost latitudes and a southward decrease in the height of the Andes enabling more spillover precipitation. The effect of the Andes on winter precipitation is so marked that it modifies the precipitation regimes in the adjacent windward and leeward lowlands north of 35°S. Based on the fact that ~75% of the wintertime precipitation accumulated in the fourth quartile, through four or five heavy events on average, the synoptic-scale patterns of the heavy (into fourth quartile) orographic precipitation events were identified. Heavy events are strongly related to strong water vapor transport from the Pacific Ocean in the pre-cold-front environment of extratropical cyclones, which would have the form of atmospheric rivers as depicted in the reanalysis and rawinsonde data. The composite fields revealed a marked difference between two subgroups of heavy precipitation events. The extreme (100th–95th percentiles) events are associated with deeper cyclones than those for intense (95th–75th percentiles) events. These deeper cyclones lead to much stronger plumes of water vapor content and cross-barrier moisture flux against the high Andes, resulting in heavier orographic precipitation for extreme events. In addition, regional airflow characteristics suggest that the low-level flow is typically blocked and diverted poleward in the form of an along-barrier jet. On the lee side, downslope flow dominates during heavy events, producing prominent rain shadow effects as denoted by the domain of downslope winds extending to low-leeward side (i.e., zonda wind).

Corresponding author address: Maximiliano Viale, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Av. Adrián Ruiz Leal s/n, Parque Gral. San Martín, CC 330, 5500 Mendoza, Argentina. E-mail: viale@cima.fcen.uba.ar

Abstract

Winter orographic precipitation over the Andes between 30° and 37°S is examined using precipitation gauges in the mountains and adjacent lowlands. Because of the limited number of precipitation gauges, this paper focuses on the large-scale variation in cross-barrier precipitation and does not take into account the fine ridge–valley scale. The maximum amount of precipitation was observed on the windward slope of the mountain range below the crest, which was twice that observed on the low-windward side between 32.5° and 34°S. Toward the east of the crest, precipitation amounts drop sharply, generating a strong cross-barrier gradient. The rain shadow effect is greater in the north (32°–34.5°S) than in the south (35°–36.5°S) of the low-lee side, which is probably due to more baroclinic activity in southernmost latitudes and a southward decrease in the height of the Andes enabling more spillover precipitation. The effect of the Andes on winter precipitation is so marked that it modifies the precipitation regimes in the adjacent windward and leeward lowlands north of 35°S. Based on the fact that ~75% of the wintertime precipitation accumulated in the fourth quartile, through four or five heavy events on average, the synoptic-scale patterns of the heavy (into fourth quartile) orographic precipitation events were identified. Heavy events are strongly related to strong water vapor transport from the Pacific Ocean in the pre-cold-front environment of extratropical cyclones, which would have the form of atmospheric rivers as depicted in the reanalysis and rawinsonde data. The composite fields revealed a marked difference between two subgroups of heavy precipitation events. The extreme (100th–95th percentiles) events are associated with deeper cyclones than those for intense (95th–75th percentiles) events. These deeper cyclones lead to much stronger plumes of water vapor content and cross-barrier moisture flux against the high Andes, resulting in heavier orographic precipitation for extreme events. In addition, regional airflow characteristics suggest that the low-level flow is typically blocked and diverted poleward in the form of an along-barrier jet. On the lee side, downslope flow dominates during heavy events, producing prominent rain shadow effects as denoted by the domain of downslope winds extending to low-leeward side (i.e., zonda wind).

Corresponding author address: Maximiliano Viale, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Av. Adrián Ruiz Leal s/n, Parque Gral. San Martín, CC 330, 5500 Mendoza, Argentina. E-mail: viale@cima.fcen.uba.ar
Save
  • Anders, A. M., Roe G. H. , Hallet B. , Montgomery D. R. , Finnegan N. , and Putkonen J. , 2006: Spatial patterns of precipitation and topography in the Himalaya. Tectonics, Climate, and Landscape Evolution: Geological Society of America Special Paper 398, S. D. Willett et al., Eds., Geological Society of America, 39–53.

    • Search Google Scholar
    • Export Citation
  • Anders, A. M., Roe G. H. , Durran D. R. , and Minder J. R. , 2007: Small-scale spatial gradients in climatological precipitation on the Olympic Peninsula. J. Hydrometeor., 8, 10681081.

    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., Garreaud R. D. , and Falvey M. , 2009: Effect of the Andes Cordillera on precipitation from a midlatitude cold front. Mon. Wea. Rev., 137, 30923109.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones: Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 129–153.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and Mass C. F. , 2000: The 5–9 February 1996 flooding event over the Pacific Northwest: Sensitivity studies and evaluation of the MM5 precipitation forecasts. Mon. Wea. Rev., 128, 593617.

    • Search Google Scholar
    • Export Citation
  • Compagnucci, R. H., and Vargas W. M. , 1998: Interannual variability of the Cuyo rivers’ streamflow in the Argentinean Andean mountains and ENSO events. Int. J. Climatol., 18, 15931609.

    • Search Google Scholar
    • Export Citation
  • Compagnucci, R. H., and Araneo D. C. , 2005: Identification of areas of statistical homogeneity for the Argentine Andean river flows and its relation to atmospheric circulation and sea surface temperature (in Spanish). Meteorologica, 30, 4155.

    • Search Google Scholar
    • Export Citation
  • Cressie, N., 1993: Statistics for Spatial Data. John Wiley and Sons, 900 pp.

  • Durre, I., Vose R. S. , and Wuertz D. B. , 2006: Overview of the Integrated Global Radiosonde Archive. J. Climate, 19, 5368.

  • Ereño, C. E., and Hoffman J. , 1978: The Pluvial Regime in the Central Cordillera (in Spanish). Geography Notebook Series, Vol. 5, Faculty of Philosophy and Letters, University of Buenos Aires, 17 pp. [Available from Library of the Faculty of Philosophy and Letters, Institute of Geography “R. Ardissone,” 4th floor, Puan 470, Buenos Aires, Argentina.]

    • Search Google Scholar
    • Export Citation
  • Falvey, M., and Garreaud R. , 2007: Wintertime precipitation episodes in Central Chile: Associated meteorological conditions and orographic influences. J. Hydrometeor., 8, 171193.

    • Search Google Scholar
    • Export Citation
  • Frei, C., and Schär C. , 1998: A precipitation climatology of the Alps from high-resolution rain gauge observations. Int. J. Climatol., 18, 873900.

    • Search Google Scholar
    • Export Citation
  • Garvet, M. F., Smull B. , and Mass C. , 2007: Multiscale mountain waves influencing a major orographic precipitation event. J. Atmos. Sci., 64, 711736.

    • Search Google Scholar
    • Export Citation
  • Goovaerts, P., 2000: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol., 228, 113129.

    • Search Google Scholar
    • Export Citation
  • Graham, R. A., and Grumm R. H. , 2010: Utilizing normalized anomalies to assess synoptic-scale weather events in the western United States. Wea. Forecasting, 25, 428445.

    • Search Google Scholar
    • Export Citation
  • Griffiths, G. A., and McSaveney M. J. , 1983: Distribution of mean annual precipitation across some steepland regions of New Zealand. N. Z. J. Sci., 26, 197209.

    • Search Google Scholar
    • Export Citation
  • Grumm, R. H., and Hart R. E. , 2001: Standardized anomalies applied to significant cold season weather events: Preliminary findings. Wea. Forecasting, 16, 736754.

    • Search Google Scholar
    • Export Citation
  • Guan, B., Molotch N. P. , Waliser D. E. , Fetzer E. J. , and Neimann P. J. , 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, doi:10.1029/2010GL044696.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and Grumm R. H. , 2001: Using normalized climatological anomalies to rank synoptic-scale events objectively. Mon. Wea. Rev., 129, 24262442.

    • Search Google Scholar
    • Export Citation
  • Hoffman, J. A. J., 1975: Climatic Atlas of South America. Part I: Maps of Mean Temperature and Precipitation. WMO, 4 pp.

  • Hoskins, B. J., and Hodges K. I. , 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129.

  • Junker, N. W., Grum R. H. , Hart R. , Bosart L. F. , Bell K. M. , and Pereira F. J. , 2008: Use of normalized anomaly fields to anticipate extreme rainfall in the mountains of northern California. Wea. Forecasting, 23, 336356.

    • Search Google Scholar
    • Export Citation
  • Junker, N. W., Brennan M. J. , Pereira F. J. , Bodner M. J. , and Grumm R. H. , 2009: Assessing the potential for rare precipitation events with standardized anomalies and ensemble guidance at the Hydrometeorological Prediction Center. Bull. Amer. Meteor. Soc., 90, 445453.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Lackmann, G. M., and Gyakum J. R. , 1999: Heavy cold-season precipitation in the northwestern United States: Synoptic climatology and an analysis of the flood of 17–18 January 1986. Wea. Forecasting, 14, 687700.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Qian Y. , 2003: The sensitivity of precipitation and snowpack simulation to model resolution via nesting in regions of complex terrain. J. Hydrometeor., 4, 10251043.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1987: Deep orographic storms over the Sierra Nevada. Part I: Thermodynamic and kinematic structure. J. Atmos. Sci., 44, 159173.

    • Search Google Scholar
    • Export Citation
  • Masiokas, M. H., Villalba R. , Luckman B. H. , Le Quesne C. , and Aravena J. C. , 2006: Snowpack variations in the Central Andes of Argentina and Chile, 1951–2005: Large-scale atmospheric influences and implications for water resources in the region. J. Climate, 19, 63346352.

    • Search Google Scholar
    • Export Citation
  • McCauley, M. P., and Sturman A. P. , 1999: A study of orographic blocking and barrier wind development upstream of the Southern Alps, New Zealand. Meteor. Atmos. Phys., 70, 121131.

    • Search Google Scholar
    • Export Citation
  • Medina, S., and Houze R. A. Jr., 2003: Air motions and precipitation growth for orographic precipitation enhancement. Quart. J. Roy. Meteor. Soc., 129, 345371.

    • Search Google Scholar
    • Export Citation
  • Miller, A., 1976: The climate of Chile. World Survey of Climatology, W. Schwerdtfeger, Ed., Vol. 12, Elsevier, 113–130.

  • Minder, J. R., Durran D. R. , Roe G. H. , and Anders A. M. , 2008: The climatology of small-scale orographic precipitation over the Olympic Mountains: Pattern and process. Quart. J. Roy. Meteor. Soc., 134, 817839.

    • Search Google Scholar
    • Export Citation
  • Montecinos, A., Díaz A. , and Aceituno P. , 2000: Seasonal diagnostic and predictability of rainfall in subtropical South America based on tropical Pacific SST. J. Climate, 13, 746758.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Lundquist J. D. , and Dettinger M. D. , 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247.

    • Search Google Scholar
    • Export Citation
  • Norte, F. A., 1988: Características del viento zonda en la región de Cuyo–Argentina (Characteristics of the zonda wind in the Cuyo–Argentina region). Ph.D. dissertation, University of Buenos Aires, 255 pp.

  • Norte, F. A., Ulke A. G. , Simonelli S. C. , and Viale M. , 2008: The severe zonda wind event of 11 July 2006 east of the Andes Cordillera (Argentine): A case study using the BRAMS model. Meteor. Atmos. Phys., 102, 114.

    • Search Google Scholar
    • Export Citation
  • Pandey, G. R., Cayan D. R. , and Georgakakos K. P. , 1999: Precipitation structure in the Sierra Nevada of California during winter. J. Geophys. Res., 104 (D10), 12 01912 030.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 1982: Barrier winds along the Sierra Nevada Mountains. J. Appl. Meteor., 21, 925930.

  • Philips, D. L., Dolph J. , and Marks D. , 1992: A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agric. For. Meteor., 58, 119141.

    • Search Google Scholar
    • Export Citation
  • Prohaska, F., 1976: The climate of Argentina, Paraguay, and Uruguay. World Survey of Climatology, W. Schwerdtfeger, Ed., Vol. 12, Elsevier, 13–73.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 1999: The California Landfalling Jets Experiment (CALJET): Objectives and design of a coastal atmosphere–ocean observing system deployed during a strong El Niño. Preprints, Third Symp. on Integrated Observing Systems, Dallas, TX, Amer. Meteor. Soc., 78–81.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Wick G. A. , 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Rotunno R. , 2005a: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical profile and atmospheric river characteristics. Mon. Wea. Rev., 133, 889910.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2005b: Improving short-term (0–48 h) cool-season quantitative precipitation forecasting: Recommendations from a USWRP workshop. Bull. Amer. Meteor. Soc., 86, 16191632.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Wick G. A. , Gutman S. I. , Dettinger M. D. , Cayan D. R. , and White A. B. , 2006: Flooding on California’s Russian River: Role of atmospheric river. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Sukovich E. , Reynolds D. , Dettinger M. , Weagle S. , Clark W. , and Neiman P. J. , 2010: Assessment of extreme quantitative precipitation forecasts and development of regional extreme event thresholds using data from HMT-2006 and COOP observers. J. Hydrometeor., 11, 12861304.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671.

  • Satyamurty, P., Nobre C. A. , and Silva Dias P. L. , 1999: South America. Meteorology of the Southern Hemisphere, Meteor. Monogr., No. 49, Amer. Meteor. Soc., 119–139.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., Norte F. A. , Satyamurty P. , and Chou S. C. , 2003: Analysis of three situations of the foehn effect over the Andes (zonda wind) using the Eta-CPTEC regional model. Wea. Forecasting, 18, 481501.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., Wratt D. S. , Henderson R. D. , and Gray W. R. , 1997: Factors affecting the distribution and spillover of precipitation in the Southern Alps of New Zealand—A case study. J. Appl. Meteor., 36, 428442.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Evans J. P. , 2007: Orographic precipitation and isotope fraction over the southern Andes. J. Hydrometeor., 8, 314.

  • Smith, R. B., Barstad I. , and Bonneau L. , 2005: Orographic precipitation and Oregon’s climate transition. J. Atmos. Sci., 62, 177191.

    • Search Google Scholar
    • Export Citation
  • Steinhauser, F., 1979: Climatic Atlas of North and Center America. WMO, 4 pp.

  • Stuart, N. A., and Grumm R. H. , 2006: Using wind anomalies to forecast East Coast winter storms. Wea. Forecasting, 21, 952968.

  • Trenberth, K. E., 1991: Storm tracks in the Southern Hemisphere. J. Atmos. Sci., 48, 21592178.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Viale, M., 2010: Characteristics of winter orographic precipitation over the subtropical central Andes (in Spanish). Ph.D. dissertation, University of Buenos Aires, 163 pp. [Available online at http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_4707_Viale.pdf.]

  • Viale, M., and Norte F. A. , 2009: Strong cross-barrier flow under stable conditions producing intense winter orographic precipitation: A case study over the subtropical central Andes. Wea. Forecasting, 24, 10091031.

    • Search Google Scholar
    • Export Citation
  • Wratt, D. S., Revell M. J. , Sinclair M. R. , Gray W. R. , Henderson R. D. , and Chater A. M. , 2000: Relationships between air mass properties and mesoscale rainfall in New Zealand’s Southern Alps. Atmos. Res., 52, 261282.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Newell R. E. , 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1993 868 38
PDF Downloads 946 330 13