Satellite and Numerical Model Investigation of Two Heavy Rain Events over the Central Mediterranean

Sante Laviola ISAC-CNR, Bologna, Italy

Search for other papers by Sante Laviola in
Current site
Google Scholar
PubMed
Close
,
Agata Moscatello ISAC-CNR, Lecce, Italy

Search for other papers by Agata Moscatello in
Current site
Google Scholar
PubMed
Close
,
Mario Marcello Miglietta ISAC-CNR, Lecce, Italy

Search for other papers by Mario Marcello Miglietta in
Current site
Google Scholar
PubMed
Close
,
Elsa Cattani ISAC-CNR, Bologna, Italy

Search for other papers by Elsa Cattani in
Current site
Google Scholar
PubMed
Close
, and
Vincenzo Levizzani ISAC-CNR, Bologna, Italy

Search for other papers by Vincenzo Levizzani in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two heavy rain events over the Central Mediterranean basin, which are markedly different by genesis, dimensions, duration, and intensity, are analyzed. Given the relative low frequency of this type of severe storms in the area, a synoptic analysis describing their development is included. A multispectral analysis based on geostationary multifrequency satellite images is applied to identify cloud type, hydrometeor phase, and cloud vertical extension. Precipitation intensity is retrieved from (i) surface rain gauges, (ii) satellite data, and (iii) numerical model simulations. The satellite precipitation retrieval algorithm 183-Water vapor Strong Lines (183-WSL) is used to retrieve rain rates and cloud hydrometeor type, classify stratiform and convective rainfall, and identify liquid water clouds and snow cover from the Advanced Microwave Sounding Unit-B (AMSU-B) sensor data. Rainfall intensity is also simulated with the Weather Research and Forecasting (WRF) numerical model over two nested domains with horizontal resolutions of 16 km (comparable to that of the satellite sensor AMSU-B) and 4 km. The statistical analysis of the comparison between satellite retrievals and model simulations demonstrates the skills of both methods for the identification of the main characteristics of the cloud systems with a suggested overall bias of the model toward very low rain intensities. WRF (in the version used for the experiment) seems to classify as low rain intensity regions those areas where the 183-WSL retrieves no precipitation while sensing a mixture of freshly nucleated cloud droplets and a large amount of water vapor; in these areas, especially adjacent to the rain clouds, large amounts of cloud liquid water are detected. The satellite method performs reasonably well in reproducing the wide range of gauge-detected precipitation intensities. A comparison of the 183-WSL retrievals with gauge measurements demonstrates the skills of the algorithm in discriminating between convective and stratiform precipitation using the scattering and absorption of radiation by the hydrometeors.

Corresponding author address: Dr. Sante Laviola, ISAC-CNR, via Gobetti 101, I-40129 Bologna, Italy. E-mail: s.laviola@isac.cnr.it

This article is included in the State of the Science of Precipitation special collection.

Abstract

Two heavy rain events over the Central Mediterranean basin, which are markedly different by genesis, dimensions, duration, and intensity, are analyzed. Given the relative low frequency of this type of severe storms in the area, a synoptic analysis describing their development is included. A multispectral analysis based on geostationary multifrequency satellite images is applied to identify cloud type, hydrometeor phase, and cloud vertical extension. Precipitation intensity is retrieved from (i) surface rain gauges, (ii) satellite data, and (iii) numerical model simulations. The satellite precipitation retrieval algorithm 183-Water vapor Strong Lines (183-WSL) is used to retrieve rain rates and cloud hydrometeor type, classify stratiform and convective rainfall, and identify liquid water clouds and snow cover from the Advanced Microwave Sounding Unit-B (AMSU-B) sensor data. Rainfall intensity is also simulated with the Weather Research and Forecasting (WRF) numerical model over two nested domains with horizontal resolutions of 16 km (comparable to that of the satellite sensor AMSU-B) and 4 km. The statistical analysis of the comparison between satellite retrievals and model simulations demonstrates the skills of both methods for the identification of the main characteristics of the cloud systems with a suggested overall bias of the model toward very low rain intensities. WRF (in the version used for the experiment) seems to classify as low rain intensity regions those areas where the 183-WSL retrieves no precipitation while sensing a mixture of freshly nucleated cloud droplets and a large amount of water vapor; in these areas, especially adjacent to the rain clouds, large amounts of cloud liquid water are detected. The satellite method performs reasonably well in reproducing the wide range of gauge-detected precipitation intensities. A comparison of the 183-WSL retrievals with gauge measurements demonstrates the skills of the algorithm in discriminating between convective and stratiform precipitation using the scattering and absorption of radiation by the hydrometeors.

Corresponding author address: Dr. Sante Laviola, ISAC-CNR, via Gobetti 101, I-40129 Bologna, Italy. E-mail: s.laviola@isac.cnr.it

This article is included in the State of the Science of Precipitation special collection.

Save
  • Bennartz, R., and Bauer P. , 2003: Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles. Radio Sci., 38, 8075, doi:10.1029/2002RS002626.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., Thoss A. , Dybbroe A. , and Michelson D. , 2002: Precipitation analysis using the Advanced Microwave Sounding Unit in support of nowcasting applications. Meteor. Appl., 9, 177189.

    • Search Google Scholar
    • Export Citation
  • Buzzi, A., and Tibaldi S. , 1978: Cyclogenesis in the lee of the Alps: A case study. Quart. J. Roy. Meteor. Soc., 104, 271287.

  • Chaboureau, J.-P., and Claud C. , 2006: Satellite-based climatology of Mediterranean cloud systems and their association with large-scale circulation. J. Geophys. Res., 111, D01102, doi:10.1029/2005JD006460.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., and Hicks B. B. , 1970: Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96, 715721.

  • Emanuel, K., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75104.

  • Emanuel, K., 2005: Genesis and maintenance of Mediterranean hurricanes. Adv. Geosci., 2, 217220.

  • Ferraro, R. R., Weng F. , Grody N. C. , and Zhao L. , 2000: Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophys. Res. Lett., 27, 26692672.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2005: NOAA operational hydrological products derived from the Advanced Microwave Sounding Unit. IEEE Trans. Geosci. Remote Sens., 43, 10361049.

    • Search Google Scholar
    • Export Citation
  • Homar, V., Ramis C. , and Alonso S. , 2002: A deep cyclone of African origin over the western Mediterranean: Diagnosis and numerical simulation. Ann. Geophys., 20, 93106.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and Pan H. L. , 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339.

    • Search Google Scholar
    • Export Citation
  • Horvath, K., Fita L. , Romero R. , and Ivancan-Picek B. , 2006: A numerical study of the first phase of a deep Mediterranean cyclone: Cyclogenesis in the lee of the Atlas Mountains. Meteor. Z., 15, 133146.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 557 pp.

  • Jansa, A., Genoves A. , Picornell M. A. , Campins J. , Riosalido R. , and Carretero O. , 2001: Western Mediterranean cyclones and heavy rain. Part 2: Statistical approach. Meteor. Appl., 8, 4356.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kongoli, C., Ferraro R. R. , Pellegrino P. , Meng H. , and Dean C. , 2007: Utilization of the AMSU high frequency measurements for improved coastal rain retrievals. Geophys. Res. Lett., 34, L17809, doi:10.1029/2007GL029940.

    • Search Google Scholar
    • Export Citation
  • Lagouvardos, K., Kotroni V. , Nickovic S. , Jovic D. , and Kallos G. , 1999: Observations and model simulations of a winter sub-synoptic vortex over the central Mediterranean. Meteor. Appl., 6, 371383.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and Fritsch J. M. , 2000: The large-scale environments of the global population of mesoscale convective complexes. Mon. Wea. Rev., 128, 27562776.

    • Search Google Scholar
    • Export Citation
  • Laviola, S., 2006: Rain rate detection using scattering index approach. A quantitative comparison of two techniques and an improvement of Bennartz algorithm. EUMETSAT SAF-NWP Tech. Rep., 22 pp.

    • Search Google Scholar
    • Export Citation
  • Laviola, S., and Levizzani V. , 2008: Rain retrieval using 183 GHz absorption lines. Proc. Microwave Radiometry and Remote Sensing of the Environment (MICRORAD 2008), Firenze, Italy, IEEE, doi:10.1109/MICRAD.2008.4579505.

    • Search Google Scholar
    • Export Citation
  • Laviola, S., and Levizzani V. , 2009: Observing precipitation by means of water vapor absorption lines: A first check of the retrieval capabilities of the 183-WSL rain retrieval method. Italian J. Remote Sens., 41 (3), 3949.

    • Search Google Scholar
    • Export Citation
  • Laviola, S., and Levizzani V. , 2011: The 183-WSL fast rain rate retrieval algorithm. Part I: Retrieval design. Atmos. Res., 99, 443461, doi:10.1016/j.atmosres.2010.11.013.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., Bauer P. , and Turk F. J. , Eds., 2007: Measuring Precipitation from Space. Advances in Global Change Research, Vol. 28, Springer, 722 pp.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., Pinelli F. , Pasqui M. , Melani S. , Laing A. G. , and Carbone R. E. , 2010: A 10-year climatology of warm season cloud patterns over Europe and the Mediterranean from Meteosat IR observations. Atmos. Res., 97 (4), 555576.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493.

    • Search Google Scholar
    • Export Citation
  • Mastrangelo, D., Horvath K. , Riccio A. , and Miglietta M. M. , 2011: Mechanisms for convection development in a long-lasting heavy precipitation event over southeastern Italy. Atmos. Res, 100, 586602, doi:10.1016/j.atmosres.2010.10.010.

    • Search Google Scholar
    • Export Citation
  • Michalakes, J., Dudhia J. , Gill D. , Henderson T. , Klemp J. , Skamarock W. , and Wang W. , 2004: The Weather Research and Forecast model: Software architecture and performance. Proceedings of the 11th ECMWF Workshop on the Use of High Performance Computing in Meteorology, W. Zwieflhofer and G. Mozdzynski, Eds., World Scientific, 156–168.

    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., and Regano A. , 2008: An observational and numerical study of a flash-flood event over south-eastern Italy. Nat. Hazards Earth Syst. Sci., 8, 14171430.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Moscatello, A., Miglietta M. M. , and Rotunno R. , 2008a: Numerical analysis of a Mediterranean “hurricane” over southeastern Italy. Mon. Wea. Rev., 136, 43734397.

    • Search Google Scholar
    • Export Citation
  • Moscatello, A., Miglietta M. M. , and Rotunno R. , 2008b: Observational analysis of a Mediterranean “hurricane” over south-eastern Italy. Weather, 63, 306311.

    • Search Google Scholar
    • Export Citation
  • Nicolaides, K. A., Michaelides S. C. , and Karacostas T. , 2004: Spatial distribution of some dynamic parameters during the evolution of selected depressions over the area of Cyprus. Int. J. Climatol., 24, 18291844.

    • Search Google Scholar
    • Export Citation
  • Noh, Y.-J., Liu G. , Seo E.-K. , Wang J. R. , and Aonashi K. , 2006: Development of a snowfall retrieval algorithm at high microwave frequencies. J. Geophys. Res., 111, D22216, doi:10.1029/2005JD006826.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861.

    • Search Google Scholar
    • Export Citation
  • Pytharoulis, I., Craig G. C. , and Ballard S. P. , 2000: The hurricane-like Mediterranean cyclone of January 1995. Meteor. Appl., 7, 261279.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. A., and Turner J. , 2003: Polar Lows. Cambridge University Press, 624 pp.

  • Rasmussen, E. A., Pedersen T. B. , Pedersen L. T. , and Turner J. , 1992: Polar lows and arctic instability in the Bear Island region. Tellus, 44A, 133154.

    • Search Google Scholar
    • Export Citation
  • Reale, O., and Atlas R. , 2001: Tropical cyclone–like vortices in the extratropics: Observational evidence and synoptic analysis. Wea. Forecasting, 16, 734.

    • Search Google Scholar
    • Export Citation
  • Romero, R., Sumner G. , Ramis C. , and Genovés A. , 1999: A classification of the atmospheric circulation patterns producing significant daily rainfall in the Spanish Mediterranean area. Int. J. Climatol., 19, 765785.

    • Search Google Scholar
    • Export Citation
  • Saunders, R. W., Hewison T. J. , Stephen S. J. , and Atkinson N. C. , 1995: The radiometric characterization of AMSU-B. IEEE Trans. Microwave Theory Tech., 43, 760771.

    • Search Google Scholar
    • Export Citation
  • Shige, S., and Coauthors, 2009: The GSMaP precipitation retrieval algorithm for microwave sounders—Part I: Over-ocean algorithm. IEEE Trans. Geosci. Remote Sens., 47, 30843097.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , Wang W. , and Powers J. G. , 2005: A description of the advanced research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Staelin, D. H., 1976: Remote sensing of the atmospheric water vapor and liquid water with Nimbus-5 microwave spectrometer. J. Appl. Meteor., 15, 12041215.

    • Search Google Scholar
    • Export Citation
  • Staelin, D. H., and Chen F. W. , 2000: Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite. IEEE Trans. Geosci. Remote Sens., 38, 23222332.

    • Search Google Scholar
    • Export Citation
  • Tartaglione, N., Lanciani A. , and Speranza A. , 2002: Effects of numerical diffusion on some gridded meteorological fields in the Mediterranean area. Proc. Fourth Plinius Conf. on Mediterranean Storms, Mallorca, Spain, Universitat de Illes Baleares.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Rasmussen R. M. , and Manning K. , 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542.

    • Search Google Scholar
    • Export Citation
  • Vasić, S., Lin C. A. , Zawadzki I. , Bousquet O. , and Chaumont D. , 2007: Evaluation of precipitation from numerical weather prediction models and satellites using values retrieved from radars. Mon. Wea. Rev., 135, 37503766.

    • Search Google Scholar
    • Export Citation
  • Webb, E. K., 1970: Profile relationships: The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 6790.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1982: Use of a conceptual model of the life cycle of mesoscale convective systems to improve very-short-range forecasts. Nowcasting, K. Browning, Ed., Academic Press, 191–204.

    • Search Google Scholar
    • Export Citation
  • Ziv, B., Saaroni H. , Yair Y. , Ganot M. , Baharad A. , and Isaschari D. , 2009: Atmospheric factors governing winter thunderstorms in the coastal region of the eastern Mediterranean. Theor. Appl. Climatol., 95, 301310.

    • Search Google Scholar
    • Export Citation
  • Zwatz-Meise, V., and Kerkmann J. , Eds., 2006: MSG channel interpretation. Guide to weather, surface conditions and atmospheric constituents. Version 1.1, EUMETSAT, CD-ROM. [Available online at http://oiswww.eumetsat.org/WEBOPS/msg_interpretation/index.php.]

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 567 382 20
PDF Downloads 115 39 6