• Anyah, R. O., , Weaver C. P. , , Miguez-Macho G. , , Fan Y. , , and Robock A. , 2008: Incorporating water table dynamics in climate modeling: 3. Simulated groundwater influence on coupled land-atmosphere variability. J. Geophys. Res., 113, D07103, doi:10.1029/2007JD009087.

    • Search Google Scholar
    • Export Citation
  • Ashby, S. F., , and Falgout R. D. , 1996: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nucl. Sci. Eng., 124, 145159.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., , Viterbo P. , , and Miller M. J. , 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124, 362383.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2009: Land-surface-atmosphere coupling in observations and models. J. Adv. Model. Earth Syst., 1 (4), doi:10.3894/JAMES.2009.1.4.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , Ball J. H. , , Beljaars A. C. M. , , Miller M. J. , , and Viterbo P. A. , 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101 (D3), 72097225.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and Avissar R. , 1994: Impact of land-surface moisture variability on local shallow convective cumulus and precipitation in large-scale models. J. Appl. Meteor., 33, 13821401.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, X., , and Hu Q. , 2004: Groundwater influences on soil moisture and surface evaporation. J. Hydrol., 297, 285300.

  • Criminisi, A., , Tucciarelli T. , , and Karatzas G. P. , 1997: A methodology to determine optimal transmissivity measurement locations in groundwater quality management models with scarce field information. Water Resour. Res., 33, 12651274.

    • Search Google Scholar
    • Export Citation
  • Domenico, P. A., , and Schwartz F. W. , 1998: Physical and Chemical Hydrogeology. 2nd ed. John Wiley and Sons, 506 pp.

  • Ek, M. B., , Mitchell K. E. , , Lin Y. , , Rogers E. , , Grunmann P. , , Koren V. , , Gayno G. , , and Tarpley D. , 2003: Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., , Ryu D. , , Berg A. A. , , Rodell M. , , and Jackson T. J. , 2008: Field observations of soil moisture variability across scales. Water Resour. Res., 44, W01423, doi:10.1029/2006WR005804.

    • Search Google Scholar
    • Export Citation
  • Gabellani, S., , Boni G. , , Ferraris L. , , von Hardenberg J. , , and Provenzale A. , 2007: Propagation of uncertainty from rainfall to runoff: A case study with a stochastic rainfall generator. Adv. Water Resour., 30, 20612071.

    • Search Google Scholar
    • Export Citation
  • Gelhar, L. W., 1986: Stochastic subsurface hydrology from theory to applications. Water Resour. Res., 22, 135S145S.

  • Giorgi, F., , and Avissar R. , 1997: Representation of heterogeneity effects in earth system modeling: Experience from land surface modeling. Rev. Geophys., 35, 413438.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., , Jiang H. , , and Cotton W. R. , 2001: A large-eddy simulation study of cumulus clouds over land and sensitivity to soil moisture. Atmos. Res., 59–60, 373392.

    • Search Google Scholar
    • Export Citation
  • Goovaerts, P., 1997: Geostatistics for Natural Resources. Oxford University Press, 483 pp.

  • Graham, W., , and McLaughlin D. , 1989: Stochastic analysis of nonstationary subsurface solute transport: 1. Unconditional moments. Water Resour. Res., 25, 215232.

    • Search Google Scholar
    • Export Citation
  • Harvey, C. F., , and Gorelick S. M. , 1995: Mapping hydraulic conductivity: Sequential conditioning with measurements of solute arrival time, hydraulic head, and local conductivity. Water Resour. Res., 31, 16151626.

    • Search Google Scholar
    • Export Citation
  • Holt, T. R., , Niyogi D. , , Chen F. , , Manning K. , , LeMone M. A. , , and Qureshi A. , 2006: Effect of land–atmosphere interactions on the IHOP 24–25 May 2002 convection case. Mon. Wea. Rev., 134, 113133.

    • Search Google Scholar
    • Export Citation
  • James, B. R., , and Gorelick S. M. , 1994: When enough is enough: The worth of monitoring data in aquifer remediation design. Water Resour. Res., 30, 34993513.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., , Niu G.-Y. , , and Yang Z.-L. , 2009: Impacts of vegetation and groundwater dynamics on warm season precipitation over the central United States. J. Geophys. Res., 114, D06109, doi:10.1029/2008JD010756.

    • Search Google Scholar
    • Export Citation
  • Jones, J. E., , and Woodward C. S. , 2001: Newton-Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems. Adv. Water Resour., 24, 763774.

    • Search Google Scholar
    • Export Citation
  • Katul, G. G., , Wendroth O. , , Parlange M. B. , , Puente C. E. , , Folegatti M. V. , , and Nielsen D. R. , 1993: Estimation of in situ hydraulic conductivity function from nonlinear filtering theory. Water Resour. Res., 29, 10631070.

    • Search Google Scholar
    • Export Citation
  • Kollet, S. J., , and Maxwell R. M. , 2006: Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv. Water Resour., 29, 945958.

    • Search Google Scholar
    • Export Citation
  • Kumar, V., , Kleissl J. , , Meneveau C. , , and Parlange M. B. , 2006: Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: Atmospheric stability and scaling issues. Water Resour. Res., 42, W06D09, doi:10.1029/2005WR004651.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., , and Palmer T. N. , 2008: Ensemble forecasting. J. Comput. Phys., 227, 35153539.

  • Lewis, J. M., 2005: Roots of ensemble forecasting. Mon. Wea. Rev., 133, 18651885.

  • Lin, Y.-L., , Farley R. D. , , and Orville H. D. , 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., , Kastenberg W. E. , , and Rubin Y. , 1999: A methodology to integrate site characterization information into groundwater-driven health risk assessment. Water Resour. Res., 35, 28412855.

    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., , Chow F. K. , , and Kollet S. J. , 2007: The groundwater–land-surface–atmosphere connection: Soil moisture effects on the atmospheric boundary layer in fully-coupled simulations. Adv. Water Resour., 30, 24472466.

    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., , Lundquist J. K. , , Mirocha J. D. , , Smith S. G. , , Woodward C. S. , , and Tompson A. F. B. , 2011: Development of a coupled groundwater–atmospheric model. Mon. Wea. Rev., 139, 96116.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , Curry J. A. , , and Khvorostyanov V. I. , 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677.

    • Search Google Scholar
    • Export Citation
  • Nowak, W., , de Barros F. P. J. , , and Rubin Y. , 2010: Bayesian geostatistical design: Task-driven optimal site investigation when the geostatistical model is uncertain. Water Resour. Res., 46, W03535, doi:10.1029/2009WR008312.

    • Search Google Scholar
    • Export Citation
  • Or, D., , and Rubin Y. , 1993: Stochastic modeling of unsaturated flow in heterogeneous media with water uptake by plant roots: Tests of the parallel columns model under two-dimensional flow conditions. Water Resour. Res., 29, 41094119.

    • Search Google Scholar
    • Export Citation
  • Patton, E. G., , Sullivan P. P. , , and Moeng C.-H. , 2005: The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci., 62, 20782097.

    • Search Google Scholar
    • Export Citation
  • Rehfeldt, K. R., , Boggs J. M. , , and Gelhar L. W. , 1992: Field study of dispersion in a heterogeneous aquifer: 3. Geostatistical analysis of hydraulic conductivity. Water Resour. Res., 28, 33093324.

    • Search Google Scholar
    • Export Citation
  • Richards, L. A., 1931: Capillary conduction of liquids in porous mediums. Physics, 1, 318333.

  • Ridolfi, L., , D’Odorico P. , , Laio F. , , Tamea S. , , and Rodriguez-Iturbe I. , 2008: Coupled stochastic dynamics of water table and soil moisture in bare soil conditions. Water Resour. Res., 44, W01435, doi:10.1029/2007WR006707.

    • Search Google Scholar
    • Export Citation
  • Rubin, Y., 2003: Applied Stochastic Hydrogeology. Oxford University Press, 391 pp.

  • Rubin, Y., , and Or D. , 1993: Stochastic modeling of unsaturated flow in heterogeneous soils with water uptake by plant roots: The parallel columns model. Water Resour. Res., 29, 619631.

    • Search Google Scholar
    • Export Citation
  • Rubin, Y., , Chen X. , , Murakami H. , , and Hahn M. , 2010: A Bayesian approach for inverse modeling, data assimilation, and conditional simulation of spatial random fields. Water Resour. Res., 46, W10523, doi:10.1029/2009WR008799.

    • Search Google Scholar
    • Export Citation
  • Scheibe, T. D., , and Chien Y.-J. , 2003: An evaluation of conditioning data for solute transport prediction. Ground Water, 41, 128141.

  • Seuffert, G., , Gross P. , , Simmer C. , , and Wood E. F. , 2002: The influence of hydrologic modeling on the predicted local weather: Two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model. J. Hydrometeor., 3, 505523.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , and Klemp J. B. , 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485.

    • Search Google Scholar
    • Export Citation
  • Sutton, C., , Hamill T. M. , , and Warner T. T. , 2006: Will perturbing soil moisture improve warm-season ensemble forecasts? A proof of concept. Mon. Wea. Rev., 134, 31743189.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., , Parker D. J. , , and Harris P. P. , 2007: An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett., 34, L15801, doi:10.1029/2007GL030572.

    • Search Google Scholar
    • Export Citation
  • Tompson, A. F. B., , Ababou R. , , and Gelhar L. W. , 1989: Implementation of the three-dimensional turning bands random field generator. Water Resour. Res., 25, 22272243.

    • Search Google Scholar
    • Export Citation
  • van Genuchten, M. T., 1980: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J., 44, 892898.

    • Search Google Scholar
    • Export Citation
  • Vasco, D. W., , Datta-Gupta A. , , and Long J. C. S. , 1997: Resolution and uncertainty in hydrologic characterization. Water Resour. Res., 33, 379397.

    • Search Google Scholar
    • Export Citation
  • Wendroth, O., , Pohl W. , , Koszinski S. , , Rogasik H. , , Ritsema C. J. , , and Nelson D. R. , 1999: Spatio-temporal patterns and covariance structures of soil water status in two Northeast-German field sites. J. Hydrol., 215, 3858.

    • Search Google Scholar
    • Export Citation
  • Western, A. W., , Zhou S.-L. , , Grayson R. B. , , McMahon T. A. , , Blöschl G. , , and Wilson D. J. , 2004: Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J. Hydrol., 286, 113134.

    • Search Google Scholar
    • Export Citation
  • Yeh, T.-C. J., , Ye M. , , and Khaleel R. , 2005: Estimation of effective unsaturated hydraulic conductivity tensor using spatial moments of observed moisture plume. Water Resour. Res., 41, W03014, doi:10.1029/2004WR003736.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 34 34 4
PDF Downloads 14 14 2

Propagating Subsurface Uncertainty to the Atmosphere Using Fully Coupled Stochastic Simulations

View More View Less
  • 1 Hydrologic Science and Engineering Program, Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado
© Get Permissions
Restricted access

Abstract

Feedbacks between the land surface and the atmosphere, manifested as mass and energy fluxes, are strongly correlated with soil moisture, making soil moisture an important factor in land–atmosphere interactions. It is shown that a reduction of the uncertainty in subsurface properties such as hydraulic conductivity (K) propagates into the atmosphere, resulting in a reduction in uncertainty in land–atmosphere feedbacks that yields more accurate atmospheric predictions. Using the fully coupled groundwater-to-atmosphere model ParFlow-WRF, which couples the hydrologic model ParFlow with the Weather Research and Forecasting (WRF) atmospheric model, responses in land–atmosphere feedbacks and wind patterns due to subsurface heterogeneity are simulated. Ensembles are generated by varying the spatial location of subsurface properties while maintaining the global statistics and correlation structure. This approach is common to the hydrologic sciences but uncommon in atmospheric simulations where ensemble forecasts are commonly generated with perturbed initial conditions or multiple model parameterizations. It is clearly shown that different realizations of K produce variation in soil moisture, latent heat flux, and wind for both point and domain-averaged quantities. Using a single random field to represent a control case, varying amounts of K data are sampled and subsurface data are incorporated into conditional Monte Carlo ensembles to show that the difference between the ensemble mean prediction and the control saturation, latent heat flux, and wind speed are reduced significantly via conditioning of K. By reducing uncertainty associated with land–atmosphere feedback mechanisms, uncertainty is also reduced in both spatially distributed and domain-averaged wind speed magnitudes, thus improving the ability to make more accurate forecasts, which is important for many applications such as wind energy.

Additional affiliation: Integrated Groundwater Modeling Center, Colorado School of Mines, Golden, Colorado.

Corresponding author address: John L. Williams III, Department of Geology and Geological Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401. E-mail: johwilli@mines.edu

Abstract

Feedbacks between the land surface and the atmosphere, manifested as mass and energy fluxes, are strongly correlated with soil moisture, making soil moisture an important factor in land–atmosphere interactions. It is shown that a reduction of the uncertainty in subsurface properties such as hydraulic conductivity (K) propagates into the atmosphere, resulting in a reduction in uncertainty in land–atmosphere feedbacks that yields more accurate atmospheric predictions. Using the fully coupled groundwater-to-atmosphere model ParFlow-WRF, which couples the hydrologic model ParFlow with the Weather Research and Forecasting (WRF) atmospheric model, responses in land–atmosphere feedbacks and wind patterns due to subsurface heterogeneity are simulated. Ensembles are generated by varying the spatial location of subsurface properties while maintaining the global statistics and correlation structure. This approach is common to the hydrologic sciences but uncommon in atmospheric simulations where ensemble forecasts are commonly generated with perturbed initial conditions or multiple model parameterizations. It is clearly shown that different realizations of K produce variation in soil moisture, latent heat flux, and wind for both point and domain-averaged quantities. Using a single random field to represent a control case, varying amounts of K data are sampled and subsurface data are incorporated into conditional Monte Carlo ensembles to show that the difference between the ensemble mean prediction and the control saturation, latent heat flux, and wind speed are reduced significantly via conditioning of K. By reducing uncertainty associated with land–atmosphere feedback mechanisms, uncertainty is also reduced in both spatially distributed and domain-averaged wind speed magnitudes, thus improving the ability to make more accurate forecasts, which is important for many applications such as wind energy.

Additional affiliation: Integrated Groundwater Modeling Center, Colorado School of Mines, Golden, Colorado.

Corresponding author address: John L. Williams III, Department of Geology and Geological Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401. E-mail: johwilli@mines.edu
Save