The Second Phase of the Global Land–Atmosphere Coupling Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill

R. D. Koster aGMAO, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by R. D. Koster in
Current site
Google Scholar
PubMed
Close
,
S. P. P. Mahanama aGMAO, NASA Goddard Space Flight Center, Greenbelt, Maryland
bUMBC/GEST, Baltimore, Maryland
cSAIC, Beltsville, Maryland

Search for other papers by S. P. P. Mahanama in
Current site
Google Scholar
PubMed
Close
,
T. J. Yamada aGMAO, NASA Goddard Space Flight Center, Greenbelt, Maryland
bUMBC/GEST, Baltimore, Maryland
dDivision of Field Engineering for Environment, Hokkaido University, Sapporo, Japan

Search for other papers by T. J. Yamada in
Current site
Google Scholar
PubMed
Close
,
Gianpaolo Balsamo eECMWF, Reading, United Kingdom

Search for other papers by Gianpaolo Balsamo in
Current site
Google Scholar
PubMed
Close
,
A. A. Berg fDepartment of Geography, University of Guelph, Guelph, Canada

Search for other papers by A. A. Berg in
Current site
Google Scholar
PubMed
Close
,
M. Boisserie gCenter for Ocean–Atmospheric Prediction Studies, The Florida State University, Tallahassee, Florida
hMeteo-France, Toulouse, France

Search for other papers by M. Boisserie in
Current site
Google Scholar
PubMed
Close
,
P. A. Dirmeyer iCenter for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by P. A. Dirmeyer in
Current site
Google Scholar
PubMed
Close
,
F. J. Doblas-Reyes jInstitució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
kInstitut Català de Ciències del Clima (IC3), Barcelona, Spain

Search for other papers by F. J. Doblas-Reyes in
Current site
Google Scholar
PubMed
Close
,
G. Drewitt fDepartment of Geography, University of Guelph, Guelph, Canada

Search for other papers by G. Drewitt in
Current site
Google Scholar
PubMed
Close
,
C. T. Gordon lNOAA/GFDL, Princeton, New Jersey

Search for other papers by C. T. Gordon in
Current site
Google Scholar
PubMed
Close
,
Z. Guo iCenter for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Z. Guo in
Current site
Google Scholar
PubMed
Close
,
J.-H. Jeong mDepartment of Earth Sciences, University of Gothenburg, Gothenburg, Sweden

Search for other papers by J.-H. Jeong in
Current site
Google Scholar
PubMed
Close
,
W.-S. Lee nCCCMA, Environment Canada, Victoria, Canada

Search for other papers by W.-S. Lee in
Current site
Google Scholar
PubMed
Close
,
Z. Li aGMAO, NASA Goddard Space Flight Center, Greenbelt, Maryland
cSAIC, Beltsville, Maryland

Search for other papers by Z. Li in
Current site
Google Scholar
PubMed
Close
,
L. Luo oDepartment of Geography, Michigan State University, East Lansing, Michigan
pPrinceton University, Princeton, New Jersey

Search for other papers by L. Luo in
Current site
Google Scholar
PubMed
Close
,
S. Malyshev pPrinceton University, Princeton, New Jersey

Search for other papers by S. Malyshev in
Current site
Google Scholar
PubMed
Close
,
W. J. Merryfield nCCCMA, Environment Canada, Victoria, Canada

Search for other papers by W. J. Merryfield in
Current site
Google Scholar
PubMed
Close
,
S. I. Seneviratne qInstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by S. I. Seneviratne in
Current site
Google Scholar
PubMed
Close
,
T. Stanelle qInstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by T. Stanelle in
Current site
Google Scholar
PubMed
Close
,
B. J. J. M. van den Hurk rKNMI, De Bilt, Netherlands

Search for other papers by B. J. J. M. van den Hurk in
Current site
Google Scholar
PubMed
Close
,
F. Vitart eECMWF, Reading, United Kingdom

Search for other papers by F. Vitart in
Current site
Google Scholar
PubMed
Close
, and
E. F. Wood pPrinceton University, Princeton, New Jersey

Search for other papers by E. F. Wood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The second phase of the Global Land–Atmosphere Coupling Experiment (GLACE-2) is a multi-institutional numerical modeling experiment focused on quantifying, for boreal summer, the subseasonal (out to two months) forecast skill for precipitation and air temperature that can be derived from the realistic initialization of land surface states, notably soil moisture. An overview of the experiment and model behavior at the global scale is described here, along with a determination and characterization of multimodel “consensus” skill. The models show modest but significant skill in predicting air temperatures, especially where the rain gauge network is dense. Given that precipitation is the chief driver of soil moisture, and thereby assuming that rain gauge density is a reasonable proxy for the adequacy of the observational network contributing to soil moisture initialization, this result indeed highlights the potential contribution of enhanced observations to prediction. Land-derived precipitation forecast skill is much weaker than that for air temperature. The skill for predicting air temperature, and to some extent precipitation, increases with the magnitude of the initial soil moisture anomaly. GLACE-2 results are examined further to provide insight into the asymmetric impacts of wet and dry soil moisture initialization on skill.

Corresponding author address: Randal Koster, Global Modeling and Assimilation Office, Code 610.1, NASA GSFC, Greenbelt, MD 20771. E-mail: randal.d.koster@nasa.gov

Abstract

The second phase of the Global Land–Atmosphere Coupling Experiment (GLACE-2) is a multi-institutional numerical modeling experiment focused on quantifying, for boreal summer, the subseasonal (out to two months) forecast skill for precipitation and air temperature that can be derived from the realistic initialization of land surface states, notably soil moisture. An overview of the experiment and model behavior at the global scale is described here, along with a determination and characterization of multimodel “consensus” skill. The models show modest but significant skill in predicting air temperatures, especially where the rain gauge network is dense. Given that precipitation is the chief driver of soil moisture, and thereby assuming that rain gauge density is a reasonable proxy for the adequacy of the observational network contributing to soil moisture initialization, this result indeed highlights the potential contribution of enhanced observations to prediction. Land-derived precipitation forecast skill is much weaker than that for air temperature. The skill for predicting air temperature, and to some extent precipitation, increases with the magnitude of the initial soil moisture anomaly. GLACE-2 results are examined further to provide insight into the asymmetric impacts of wet and dry soil moisture initialization on skill.

Corresponding author address: Randal Koster, Global Modeling and Assimilation Office, Code 610.1, NASA GSFC, Greenbelt, MD 20771. E-mail: randal.d.koster@nasa.gov
Save
  • Bacmeister, J., Pegion P. J. , Schubert S. D. , and Suarez M. J. , 2000: Atlas of seasonal means simulated by the NSIPP 1 atmospheric GCM. NASA Tech. Memo. 2000-104606, Vol. 17, 194 pp.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Viterbo P. , Beljaars A. , van den Hurk B. J. J. M. , Hirschi M. , Betts A. K. , and Scipal K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeor., 10, 623643.

    • Search Google Scholar
    • Export Citation
  • Berg, A. A., Famiglietti J. S. , Rodell M. , Jambor U. , Holl S. L. , Reichle R. H. , and Houser P. R. , 2005: Development of a hydrometeorological forcing data set for global soil moisture estimation. Int. J. Climatol., 25, 16971714.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Ball J. H. , 1995: The FIFE surface diurnal cycle climate. J. Geophys. Res., 100, 25 67925 693.

  • Betts, A. K., Ball J. H. , Beljaars A. C. M. , Miller M. J. , and Viterbo P. , 1994: Coupling between land-surface, boundary-layer parameterizations and rainfall on local and regional scales: Lessons from the wet summer of 1993. Preprints, Fifth Symp. on Global Change Studies, Nashville, TN, Amer. Meteor. Soc., 174–181.

    • Search Google Scholar
    • Export Citation
  • Caesar, J., Alexander L. , and Vose R. , 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. J. Geophys. Res., 111, D05101, doi:10.1029/2005JD006280.

    • Search Google Scholar
    • Export Citation
  • Cocke, S., and LaRow T. E. , 2000: Seasonal predictions using a regional spectral model embedded within a coupled ocean–atmosphere model. Mon. Wea. Rev., 128, 689708.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19, 21442161.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., Bonan G. B. , and Levis S. , 2006: Soil moisture feedbacks to precipitation in southern Africa. J. Climate, 19, 41984206.

  • Decharme, B., and Douville H. , 2006: Uncertainties in the GSWP-2 precipitation forcing and their impacts on regional and global hydrological simulations. Climate Dyn., 27, 695713.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Manabe S. , 1989: The influence of soil wetness on near-surface atmospheric variability. J. Climate, 2, 14471462.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13, 29002922.

  • Dirmeyer, P. A., Gao X. , and Oki T. , 2002: GSWP-2: The Second Global Soil Wetness Project Science and Implementation Plan. IGPO Publication Series, No. 37, IGPO, 65 pp.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Gao X. , Zhao M. , Guo Z. , Oki T. , and Hanasaki N. , 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811397.

    • Search Google Scholar
    • Export Citation
  • Douville, H., 2002: Influence of soil moisture on the Asian and African monsoons. Part II: Interannual variability. J. Climate, 15, 701720.

    • Search Google Scholar
    • Export Citation
  • Douville, H., 2010: Relative contribution of soil moisture and snow mass to seasonal climate predictability: A pilot study. Climate Dyn., 34, 797818, doi:10.1007/s00382-008-0508-1.

    • Search Google Scholar
    • Export Citation
  • Douville, H., and Chauvin F. , 2000: Relevance of soil moisture for seasonal climate predictions: A preliminary study. Climate Dyn., 16, 719736.

    • Search Google Scholar
    • Export Citation
  • Douville, H., Chauvin F. , and Broqua H. , 2001: Influence of soil moisture on the Asian and African monsoons. Part I: Mean monsoon and daily precipitation. J. Climate, 14, 23812403.

    • Search Google Scholar
    • Export Citation
  • ECMWF, cited 2010: IFS documentation CY33r1. [Available online at http://www.ecmwf.int/research/ifsdocs/CY33r1/index.html.]

  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of the Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., Reichle R. H. , Koster R. D. , and Crow W. T. , 2010: Performance metrics for soil moisture retrievals and application requirements. J. Hydrometeor., 11, 832840.

    • Search Google Scholar
    • Export Citation
  • Entin, J. K., Robock A. , Vinnikov K. Y. , Hollinger S. E. , Liu S. , and Namkhai A. , 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res., 105, 11 86511 877.

    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., and Shukla J. , 1999: Impact of initial soil wetness on seasonal atmospheric prediction. J. Climate, 12, 31673180.

  • Findell, K. L., and Eltahir E. A. B. , 1997: An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois. Water Resour. Res., 33, 725735.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., Krajewski W. F. , Morrissey M. , Langerud D. , Huffman G. J. , and Adler R. , 2003: Error uncertainty analysis of GPCP monthly rainfall products: A data-based simulation study. J. Appl. Meteor., 42, 18371848.

    • Search Google Scholar
    • Export Citation
  • GFDL Global Atmospheric Model Development Team, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and Kalnay E. , 2000: Role of sea surface temperature and soil-moisture feedback in the 1998 Oklahoma–Texas drought. Nature, 408, 842844.

    • Search Google Scholar
    • Export Citation
  • Huang, J.-C., Kao S.-J. , Chang K.-T. , Lin C.-Y. , and Chang P.-L. , 2008: Cost-effective raingauge deployment and rainfall heterogeneity effect on hydrograph simulation in mountainous watersheds. Hydrol. Earth Syst. Sci. Discuss., 5, 21692197.

    • Search Google Scholar
    • Export Citation
  • Jaeger, E. B., and Seneviratne S. I. , 2011: Impact of soil moisture–atmosphere coupling on European climate extremes and trends in a regional climate model. Climate Dyn., 36, 19191939.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2010: The ECMWF model climate: Recent progress through improved physical parametrizations. Quart. J. Roy. Meteor. Soc., 136, 11451160, doi:10.1002/qj.634.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004a: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeor., 5, 10491063.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004b: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140.

  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Guo Z. , Yang R. , Dirmeyer P. A. , Mitchell K. , and Puma M. J. , 2009a: On the nature of soil moisture in land surface models. J. Climate, 22, 43224335.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Schubert S. D. , and Suarez M. J. , 2009b: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Mahanama, S. P. P., Koster R. D. , Reichle R. H. , and Suarez M. J. , 2008: Impact of subsurface temperature variability on surface air temperature variability: An AGCM study. J. Hydrometeor., 9, 804815.

    • Search Google Scholar
    • Export Citation
  • Misra, V., and Coauthors, 2007: Validating and understanding ENSO simulation in two coupled climate models. Tellus, 59A, 292308.

  • Moorthi, S., Pan H.-L. , and Caplan P. , 2001: Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. NWS Tech. Procedures Bull. 484, 14 pp.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., Richter J. H. , and Jochum M. , 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Oki, T., Nishimura T. , and Dirmeyer P. , 1999: Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). J. Meteor. Soc. Japan, 77, 235255.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Perkins S. E. , 2009: Global and regional comparison of daily 2-m and 1000-hPa maximum and minimum temperatures in three global reanalyses. J. Climate, 22, 46674681.

    • Search Google Scholar
    • Export Citation
  • Raddatz, T. J., and Coauthors, 2007: Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? Climate Dyn., 29, 565574, doi:10.1007/s00382-007-0247-8.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and Smith T. M. , 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology Rep. 349, 140 pp.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., McFarlane N. A. , Lazare M. , Li J. , and Plummer D. , 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 70557074.

    • Search Google Scholar
    • Export Citation
  • Seed, A. W., and Austin G. L. , 1990: Sampling errors for raingauge-derived mean areal daily and monthly rainfall. J. Hydrology, 118, 163173, doi:10.1016/0022-1694(90)90256-W.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2006: Soil moisture memory in AGCM simulations: Analysis of Global Land–Atmosphere Coupling Experiment (GLACE) data. J. Hydrometeor., 7, 10901112.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Corti T. , Davin E. L. , Hirschi M. , Jaeger E. B. , Lehner I. , Orlowsky B. , and Teuling A. J. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111.

    • Search Google Scholar
    • Export Citation
  • Shin, D. W., Cocke S. , LaRow T. E. , and O’Brien J. J. , 2005: Seasonal surface air temperature and precipitation in the FSU climate model coupled to the CLM2. J. Climate, 18, 32173228.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Mintz Y. , 1982: Influence of land-surface evapotranspiration on the earth’s climate. Science, 215, 14981501.

  • Van den Hurk, B. J. J. M., and van Meijgaard E. , 2010: Diagnosing land–atmosphere interaction from a regional climate model simulation over West Africa. J. Hydrometeor., 11, 467481.

    • Search Google Scholar
    • Export Citation
  • Van den Hurk, B. J. J. M., Doblas-Reyes F. , Balsamo G. , Koster R. , Seneviratne S. , and Camargo, H. Jr., 2011: Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe. Climate Dyn., doi:10.1007/s00382-010-0956-2, in press.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K.Ya, and Yeserkepova I. B. , 1991: Soil moisture: Empirical data and model results. J. Climate, 4, 6679.

  • Vitart, F., and Coauthors, 2008: The new VarEPS-monthly forecasting system: A first step towards seamless prediction. Quart. J. Roy. Meteor. Soc., 134, 17891799.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., and Betts A. K. , 1999: Impact of the ECMWF reanalysis soil water on forecasts of the July 1993 Mississippi flood. J. Geophys. Res., 104, 19 36119 366.

    • Search Google Scholar
    • Export Citation
  • Xie, P., Janowiak J. E. , Arkin P. A. , Adler R. , Gruber A. , Ferraro R. , Huffman G. J. , and Curtis S. , 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16, 21972214.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I. I., 1973: Errors and fluctuations of raingauge estimates of areal rainfall. J. Hydrol., 18, 243255.

  • Zhao, M., and Dirmeyer P. A. , 2003: Production and analysis of GSWP-2 near-surface meteorology data sets. Center for Ocean Land Atmosphere Studies Tech Memo. 159, 38 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5904 1923 345
PDF Downloads 1681 352 54