Climate Change Effects on Spatiotemporal Patterns of Hydroclimatological Summer Droughts in Norway

Wai Kwok Wong Norwegian Water Resources and Energy Directorate, Oslo, Norway

Search for other papers by Wai Kwok Wong in
Current site
Google Scholar
PubMed
Close
,
Stein Beldring Norwegian Water Resources and Energy Directorate, Oslo, Norway

Search for other papers by Stein Beldring in
Current site
Google Scholar
PubMed
Close
,
Torill Engen-Skaugen Norwegian Meteorological Institute, Oslo, Norway

Search for other papers by Torill Engen-Skaugen in
Current site
Google Scholar
PubMed
Close
,
Ingjerd Haddeland Norwegian Water Resources and Energy Directorate, Oslo, Norway

Search for other papers by Ingjerd Haddeland in
Current site
Google Scholar
PubMed
Close
, and
Hege Hisdal Norwegian Water Resources and Energy Directorate, Oslo, Norway

Search for other papers by Hege Hisdal in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the impact of climate change on droughts in Norway. A spatially distributed (1 × 1 km2) version of the Hydrologiska Byråns Vattenbalansavdelning (HBV) precipitation-runoff model was used to provide hydrological data for the analyses. Downscaled daily temperature and precipitation derived from two atmosphere–ocean general circulation models with two future emission scenarios were applied as input to the HBV model. The differences in hydroclimatological drought characteristics in the summer season between the periods 1961–90 and 2071–2100 were studied. The threshold level method was adopted to select drought events for both present and future climates. Changes in both the duration and spatial extent of precipitation, soil moisture, runoff, and groundwater droughts were identified. Despite small changes in future meteorological drought characteristics, substantial increases in hydrological drought duration and drought affected areas are expected, especially in the southern and northernmost parts of the country. Reduced summer precipitation is a major factor that affects changes in drought characteristics in the south while temperature increases play a more dominant role for the rest of the country.

Corresponding author address: Wai Kwok Wong, Norwegian Water Resources and Energy Directorate, NVE, P.O. Box 5091, Majorstuen, Oslo N-0301, Norway. E-mail: wkw@nve.no

This article is included in the Water and Global Change (WATCH) special collection.

Abstract

This study examines the impact of climate change on droughts in Norway. A spatially distributed (1 × 1 km2) version of the Hydrologiska Byråns Vattenbalansavdelning (HBV) precipitation-runoff model was used to provide hydrological data for the analyses. Downscaled daily temperature and precipitation derived from two atmosphere–ocean general circulation models with two future emission scenarios were applied as input to the HBV model. The differences in hydroclimatological drought characteristics in the summer season between the periods 1961–90 and 2071–2100 were studied. The threshold level method was adopted to select drought events for both present and future climates. Changes in both the duration and spatial extent of precipitation, soil moisture, runoff, and groundwater droughts were identified. Despite small changes in future meteorological drought characteristics, substantial increases in hydrological drought duration and drought affected areas are expected, especially in the southern and northernmost parts of the country. Reduced summer precipitation is a major factor that affects changes in drought characteristics in the south while temperature increases play a more dominant role for the rest of the country.

Corresponding author address: Wai Kwok Wong, Norwegian Water Resources and Energy Directorate, NVE, P.O. Box 5091, Majorstuen, Oslo N-0301, Norway. E-mail: wkw@nve.no

This article is included in the Water and Global Change (WATCH) special collection.

Save
  • Alkama, R., Kageyama M. , and Ramstein G. , 2010: Relative contributions of climate change, stomatal closure, and leaf area index changes to 20th and 21st century runoff change: A modelling approach using the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) land surface model. J. Geophys. Res., 115, D17112, doi:10.1029/2009JD013408.

    • Search Google Scholar
    • Export Citation
  • Beldring, S., Roald L. A. , and Voksø A. , 2002: Avrenningskart for Norge: Årsmiddelverdier for avrenning 1961-1990 (Map of annual runoff for Norway for the period 1961-1990). Norwegian Water Resources and Energy Directorate Doc. 2/2002, 49 pp. [Available online at http://www.nve.no/Global/Publikasjoner/Publikasjoner%202002/Dokument%202002/Trykkefil%202-02.pdf.]

    • Search Google Scholar
    • Export Citation
  • Beldring, S., Engeland K. , Roald L. A. , Sælthun N. R. , and Voksø A. , 2003: Estimation of parameters in a distributed precipitation-runoff model for Norway. Hydrol. Earth Syst. Sci., 7, 304316.

    • Search Google Scholar
    • Export Citation
  • Beldring, S., Roald L. A. , Engen-Skaugen T. , and Førland E. J. , 2006: Climate change impacts on hydrological processes in Norway 2071-2100 based on RegClim HIRHAM and Rossby Centre RCAO regional climate model results. Norwegian Water Resources and Energy Directorate Rep. 5/2006, 59 pp. [Available online at http://www.nve.no/Global/Publikasjoner/Publikasjoner%202006/Report%202006/report5-06.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bergström, S., 1995: The HBV model. Computer Models of Watershed Hydrology, V.P. Singh, Ed., Water Resources Publications, 443–476.

  • Bergström, S., and Sandberg G. , 1983: Simulation of groundwater response by conceptual models—Three case studies. Nord. Hydrol., 14, 7184.

    • Search Google Scholar
    • Export Citation
  • Bergström, S., and Coauthors, 2007: Hydropower. Impacts of Climate Change on Renewable Energy Sources: Their Role in the Nordic Energy System, J. Fenger, Ed., Nordic Council of Ministers, 74–104. [Available online at http://www.nordicenergy.net/download.cfm?file=1120-C6036A69BE21CB660499B75718A3EF24.]

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., and Coauthors, 2007: Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature, 448, 10371041, doi:10.1038/nature06045.

    • Search Google Scholar
    • Export Citation
  • Blenkinsop, S., and Fowler H. J. , 2007: Changes in drought frequency, severity and duration for the British Isles projected by the PRUDENCE regional climate models. J. Hydrol., 342, 5071, doi:10.1016/j.jhydrol.2007.05.003.

    • Search Google Scholar
    • Export Citation
  • Bounoua, L., Hall F. G. , Sellers P. J. , Kumar A. , Collatz G. J. , Tucker C. J. , and Imhoff M. L. , 2010: Quantifying the negative feedback of vegetation to greenhouse warming: A modeling approach. Geophys. Res. Lett., 37, L23701, doi:10.1029/2010GL045338.

    • Search Google Scholar
    • Export Citation
  • Bringfelt, B., Räisänen J. , Gollvik S. , Lindström G. , Graham P. , and Ullerstig A. , 2001: The land surface treatment for the Rossby Centre Regional Atmospheric Climate Model—Version 2 (RCA2). Swedish Meteorological and Hydrological Institute Meteorology and Climatology Rep. RMK 98, 40 pp. [Available online at http://www.smhi.se/en/Publications/the-land-surface-treatment-for-the-rossby-centre-regional-atmospheric-climate-model-version-2-rca2-1.6663.]

    • Search Google Scholar
    • Export Citation
  • Calanca, P., 2007: Climate change and drought occurrence in the Alpine region: How severe are becoming the extremes? Global Planet. Change, 57, 151160.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Christensen O. B. , 2007: A summary of the PRUDENCE model projection of changes in European climate by the end of this century. Climatic Change, 81, 730, doi:10.1007/s10584-006-9210-7.

    • Search Google Scholar
    • Export Citation
  • Colleuille, H., Beldring S. , Mengistu Z. , Haugen L. E. , Øverlie T. , Andersen J. , and Wong W. K. , 2008: Monitoring system for groundwater and soil water based on simulations and real-time observations: The Norwegian experience. Proc. XXV Nordic Hydrological Conf., Reykjavik, Iceland, Nordic Hydrological Programme, 329–339. [Available online at http://www.nhf-hydrology.org/storage/conferences/nhc2008_vol2.pdf.]

    • Search Google Scholar
    • Export Citation
  • Engen-Skaugen, T., 2007: Refinement of dynamically downscaled precipitation and temperature scenarios. Climatic Change, 84, 365382, doi:10.1007/s10584-007-9251-6.

    • Search Google Scholar
    • Export Citation
  • Feyen, L., and Dankers R. , 2009: Impact of global warming on streamflow drought in Europe. J. Geophys. Res., 114, D17116, doi:10.1029/2008JD011438.

    • Search Google Scholar
    • Export Citation
  • Fleig, A. K., Tallaksen L. M. , Hisdal H. , and Demuth S. , 2006: A global evaluation of streamflow drought characteristics. Hydrol. Earth Syst. Sci., 10, 535552.

    • Search Google Scholar
    • Export Citation
  • Frei, C., Christensen J. H. , Déqué M. , Jacob D. , Jones R. G. , and Vidale P. L. , 2003: Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps. J. Geophys. Res., 108, 4124, doi:10.1029/2002JD002287.

    • Search Google Scholar
    • Export Citation
  • Gerten, D., Rost S. , von Bloh W. , and Lucht W. , 2008: Causes of change in 20th century global river discharge. Geophys. Res. Lett., 35, L20405, doi:10.1029/2008GL035258.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., Cooper C. , Senior C. A. , Banks H. , Gregory J. M. , Johns T. C. , Mitchell J. B. F. , and Wood R. A. , 2000: The simulation of SST, sea ice extents and ocean heat transport in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147168.

    • Search Google Scholar
    • Export Citation
  • Gottschalk, L., Beldring S. , Engeland K. , Tallaksen L. , Sælthun N. R. , Kolberg S. , and Motovilov Y. , 2001: Regional/macroscale hydrological modelling: A Scandinavian experience. Hydrol. Sci. J., 46, 963982.

    • Search Google Scholar
    • Export Citation
  • Hanssen-Bauer, I., and Coauthors, 2009: Climate in Norway 2100 (Klima i Norge 2100). Norsk Klimasenter Rep., 147 pp. [Available online at http://www.regjeringen.no/upload/MD/Kampanje/klimatilpasning/Bilder/NOU/klimatilpassing_endelig_lavoppl.pdf.]

    • Search Google Scholar
    • Export Citation
  • Haugen, J. E., and Iversen T. , 2008: Response in extremes of daily precipitation and wind from a downscaled multi-model ensemble of anthropogenic global climate change scenarios. Tellus, 60A, 411426, doi:10.1111/j.1600-0870.2008.00315.x.

    • Search Google Scholar
    • Export Citation
  • Hisdal, H., and Tallaksen L. M. , 2003: Estimation of regional meteorological and hydrological drought characteristics. J. Hydrol., 281, 230247.

    • Search Google Scholar
    • Export Citation
  • Hisdal, H., Stahl K. , Tallaksen L. M. , and Demuth S. , 2001: Have streamflow droughts in Europe become more severe or frequent? Int. J. Climatol., 21, 317333.

    • Search Google Scholar
    • Export Citation
  • Hisdal, H., Tallaksen L. M. , Clausen B. , Peters E. , and Gustard A. , 2004: Hydrological drought characteristics. Hydrological Drought Processes and Estimation Methods for Streamflow and Groundwater, L. M. Tallaksen and H. A. J. van Lanen, Eds., Developments in Water Sciences, Vol. 48, Elsevier Science, 139–198.

    • Search Google Scholar
    • Export Citation
  • Hobbins, M. T., Dai A. , Roderick M. L. , and Farquhar G. D. , 2008: Revisiting the parameterization of potential evaporation as a driver of long-term water balance trends. Geophys. Res. Lett., 35, L12403, doi:10.1029/2008GL033840.

    • Search Google Scholar
    • Export Citation
  • Larsen, R. J., and Marx M. L. , 1986: An Introduction to Mathematical Statistics and Its Application. 2nd ed. Prentice-Hall, 630 pp.

  • Lehner, B., Döll P. , Alcamo J. , Henrichs T. , and Kaspar F. , 2006: Estimating the impact of global change on flood and drought risks in Europe: A continental, integrated analysis. Climatic Change, 75, 273299, doi:10.1007/s10584-006-6338-4.

    • Search Google Scholar
    • Export Citation
  • Lindström, G., Johansson B. , Persson M. , Gardelin M. , and Bergström S. , 1997: Development and test of the distributed HBV-96 model. J. Hydrol., 201, 272288.

    • Search Google Scholar
    • Export Citation
  • Ludwig, F., Kabat P. , van Schaik H. , and van der Valk M. , Eds., 2009: Climate Change Adaptation in the Water Sector. Earthscan, 274 pp.

  • Milly, P. C. D., and Dunne K. A. , 2010: On the hydrologic adjustment of climate-model projections: The potential pitfall of potential evapotranspiration. Earth Interact., 15, 114. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Nakićenović, N., and Swart R. , Eds., 2000: Special Report on Emission Scenarios. Cambridge University Press, 599 pp.

  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549.

    • Search Google Scholar
    • Export Citation
  • Nyberg, L., 1995: Water flow path interactions with soil hydraulic properties in till soil at Gårdsjön, Sweden. J. Hydrol., 170, 255275.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., Hobbins M. T. , and Farquhar G. D. , 2009: Pan Evaporation Trends and the Terrestrial Water Balance II. Energy Balance and Interpretation. Geogr. Compass, 3, 761780, doi:10.1111/j.1749-8198.2008.00214.x.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., Bengtsson L. , Feichter J. , Lelieveld J. , and Rodhe H. , 1999: Transient climate change simulations with a coupled atmosphere–ocean GCM including the tropospheric sulfur cycle. J. Climate, 12, 30043032.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Wood E. F. , 2007: Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res., 112, D17115, doi:10.1029/2006JD008288.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Wood E. F. , 2008: Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dyn., 31, 79105, doi:10.1007/s00382-007-0340-z.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., Qin D. , Manning M. , Marquis M. , Averyt K. , Tignor M. M. B. , Miller H. L. Jr., and Chen Z. , Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Tallaksen, L. M., and van Lanen H. A. J. , Eds., 2004: Hydrological Drought—Processes and Estimation Methods for Streamflow and Groundwater. Developments in Water Sciences, Vol. 48, Elsevier Science, 579 pp.

    • Search Google Scholar
    • Export Citation
  • Tallaksen, L. M., Hisdal H. , and van Lanen H. A. J. , 2009: Space–time modelling of catchment scale dought characteristics. J. Hydrol., 375, 363372, doi:10.1016/j.jhydrol.2009.06.032.

    • Search Google Scholar
    • Export Citation
  • Tveito, O. E., Bjørdal I. , Skjelvåg A. O. , and Aune B. , 2005: A GIS-based agro-ecological decision system based on gridded climatology. Meteor. Appl., 12, 5768.

    • Search Google Scholar
    • Export Citation
  • Vehviläinen, B., and Motovilov Y. , 1989: Simulation of soil frost depth and effect on runoff. Nord. Hydrol., 20, 924.

  • Wilson, D., Hisdal H. , and Lawrence D. , 2010: Has streamflow changed in the Nordic countries? – Recent trends and comparisons to hydrological projections. J. Hydrol., 394, 334346, doi:10.1016/j.jhydrol.2010.09.010.

    • Search Google Scholar
    • Export Citation
  • Xu, C.-Y., and Singh V. P. , 2001: Evaluation and generalization of temperature-based methods for calculating evaporation. Hydrol. Processes, 15, 305319.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1400 715 31
PDF Downloads 469 113 5