Development of a Unified Land Model for Prediction of Surface Hydrology and Land–Atmosphere Interactions

Ben Livneh Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Ben Livneh in
Current site
Google Scholar
PubMed
Close
,
Pedro J. Restrepo Office of Hydrologic Development, NOAA/National Weather Service, Silver Spring, Maryland

Search for other papers by Pedro J. Restrepo in
Current site
Google Scholar
PubMed
Close
, and
Dennis P. Lettenmaier Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Dennis P. Lettenmaier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A unified land model (ULM) is described that combines the surface flux parameterizations in the Noah land surface model (used in most of NOAA’s coupled weather and climate models) with the Sacramento Soil Moisture Accounting model (Sac; used for hydrologic prediction within the National Weather Service). The motivation was to develop a model that has a history of strong hydrologic performance while having the ability to be run in the coupled land–atmosphere environment. ULM takes the vegetation, snow model, frozen soil, and evapotranspiration schemes from Noah and merges them with the soil moisture accounting scheme from Sac. ULM surface fluxes, soil moisture, and streamflow simulations were evaluated through comparisons with observations from the Ameriflux (surface flux), Illinois Climate Network (soil moisture), and Model Parameter Estimation Experiment (MOPEX; streamflow) datasets. Initially, a priori parameters from Sac and Noah were used, which resulted in ULM surface flux simulations that were comparable to those produced by Noah (Sac does not predict surface energy fluxes). ULM with the a priori parameters had streamflow simulation skill that was generally similar to Sac’s, although it was slightly better (worse) for wetter (more arid) basins. ULM model performance using a set of parameters identified via a Monte Carlo search procedure lead to substantial improvements relative to the a priori parameters. A scheme for transfer of parameters from streamflow simulations to nearby flux and soil moisture measurement points was also evaluated; this approach did not yield conclusive improvements relative to the a priori parameters.

Corresponding author address: Ben Livneh, Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195. E-mail: blivneh@hydro.washington.edu

Abstract

A unified land model (ULM) is described that combines the surface flux parameterizations in the Noah land surface model (used in most of NOAA’s coupled weather and climate models) with the Sacramento Soil Moisture Accounting model (Sac; used for hydrologic prediction within the National Weather Service). The motivation was to develop a model that has a history of strong hydrologic performance while having the ability to be run in the coupled land–atmosphere environment. ULM takes the vegetation, snow model, frozen soil, and evapotranspiration schemes from Noah and merges them with the soil moisture accounting scheme from Sac. ULM surface fluxes, soil moisture, and streamflow simulations were evaluated through comparisons with observations from the Ameriflux (surface flux), Illinois Climate Network (soil moisture), and Model Parameter Estimation Experiment (MOPEX; streamflow) datasets. Initially, a priori parameters from Sac and Noah were used, which resulted in ULM surface flux simulations that were comparable to those produced by Noah (Sac does not predict surface energy fluxes). ULM with the a priori parameters had streamflow simulation skill that was generally similar to Sac’s, although it was slightly better (worse) for wetter (more arid) basins. ULM model performance using a set of parameters identified via a Monte Carlo search procedure lead to substantial improvements relative to the a priori parameters. A scheme for transfer of parameters from streamflow simulations to nearby flux and soil moisture measurement points was also evaluated; this approach did not yield conclusive improvements relative to the a priori parameters.

Corresponding author address: Ben Livneh, Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195. E-mail: blivneh@hydro.washington.edu
Save
  • Abdulla, F. A., and Lettenmaier D. P. , 1997: Development of regional parameter estimation equations for a macroscale hydrologic model. J. Hydrol., 197, 230257.

    • Search Google Scholar
    • Export Citation
  • Anderson, E. A., 1973: National Weather Service River Forecast System—Snow accumulation and ablation model. NOAA Tech. Memo. NWS HYDRO-17, 217 pp.

    • Search Google Scholar
    • Export Citation
  • Anderson, R. M., Koren V. I. , and Reed S. M. , 2006: Using SSURGO data to improve Sacramento model a priori parameter estimates. J. Hydrol., 320, 103116.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., 2001: Streamflow simulations for continental-scale river basins in a global atmospheric general circulation model. Adv. Water Resour., 24, 775791.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., 2003: Assessing the eddy-covariance technique for evaluating the carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biol., 9, 479492.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., Finnigan J. , Wilson K. , Paw U K. T. , and Falge E. , 2000: On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Bound.-Layer Meteor., 96, 257291.

    • Search Google Scholar
    • Export Citation
  • Bastidas, L. A., Hogue T. S. , Sorooshian S. , Gupta H. V. , and Shuttleworth W. J. , 2006: Parameter sensitivity analysis for different complexity land surface models using multicriteria methods. J. Geophys. Res., 111, D20101, doi:10.1029/2005JD006377.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , Beljaars A. C. M. , Miller M. J. , and Viterbo P. A. , 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101 (D3), 72097225.

    • Search Google Scholar
    • Export Citation
  • Bohn, T. J., Sonessa M. Y. , and Lettenmaier D. P. , 2010: Seasonal hydrologic forecasting: Is there a role for multimodel ensemble methods? J. Hydrometeor., 11, 13581372.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., Pollard D. , and Thompson S. L. , 1992: Effects of boreal forest vegetation on global climate. Nature, 359, 716718.

  • Budyko, M. I., 1974: Climate and Life. Academic Press, 508 pp.

  • Burnash, R. J. C., Ferral R. L. , and McGuire R. A. , 1973: A generalized streamflow simulation system—Conceptual modeling for digital computers. U.S. National Weather Service and California Department of Water Resources Joint Federal and State River Forecast Center Tech. Rep., 204 pp.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268.

    • Search Google Scholar
    • Export Citation
  • Chen, F., Janjic Z. , and Mitchell K. E. , 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Bound.-Layer Meteor., 85, 391421.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158.

    • Search Google Scholar
    • Export Citation
  • D’Odorico, P., Caylor K. , Okin G. S. , and Scanlon T. M. , 2007: On soil moisture–vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. J. Geophys. Res., 112, G04010, doi:10.1029/2006JG000379.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., Sorooshian S. , and Gupta V. K. , 1994: Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol., 158 (3–4), 265284.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and Holtslag A. A. M. , 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699.

  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 22, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Falge, E., and Coauthors, 2001: Gap filling strategies for long term energy flux data sets. Agric. For. Meteor., 107, 7177.

  • Finnerty, B. D., Smith M. B. , Seo D. J. , Koren V. I. , and Moglen G. , 1997: Sensitivity of the Sacramento Soil Moisture Accounting model to space–time scale precipitation inputs from NEXRAD. J. Hydrol., 203 (1–4), 2138.

    • Search Google Scholar
    • Export Citation
  • Gan, T. Y., and Burges S. J. , 2006: Assessment of soil-based and calibrated parameters of the Sacramento model and parameter transferability. J. Hydrol., 320 (1–2), 117131.

    • Search Google Scholar
    • Export Citation
  • Goldstein, A. H., and Coauthors, 2000: Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA). Agric. For. Meteor., 101 (2–3), 113129.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., Sorooshian S. , and Yapo P. O. , 1998: Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resour. Res., 34, 751763.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., Bastidas L. A. , Sorooshian S. , Shuttleworth W. J. , and Yang Z. L. , 1999: Parameter estimation of a land surface scheme using multicriteria methods. J. Geophys. Res., 104, 491503.

    • Search Google Scholar
    • Export Citation
  • Gutman, G., and Ignatov A. , 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 15331543.

    • Search Google Scholar
    • Export Citation
  • Heuvelmans, G., Muys B. , and Feyen J. , 2004: Evaluation of hydrological model parameter transferability for simulating the impact of land use on catchment hydrology. Phys. Chem. Earth, 29 (11–12), 739747.

    • Search Google Scholar
    • Export Citation
  • Hollinger, D. Y., Goltz S. M. , Davidson E. A. , Lee J. T. , Tu K. , and Valentine H. T. , 1999: Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest. Global Change Biol., 5, 891902.

    • Search Google Scholar
    • Export Citation
  • Hollinger, S. E., and Isard S. A. , 1994: A soil moisture climatology of Illinois. J. Climate, 7, 822833.

  • Jarvis, P. G., 1976: The interpretation of leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, B273, 593610.

    • Search Google Scholar
    • Export Citation
  • Johansen, O., 1977: Thermal conductivity of soils (in Norwegian). Ph.D. thesis, University of Trondheim, 236 pp.

  • Koren, V. I., 2006: Parameterization of frozen ground effects: Sensitivity to soil properties. Predictions in Ungauged Basins: Promises and Progress, M. Sivapalan, Ed., IAHS, 125–133.

    • Search Google Scholar
    • Export Citation
  • Koren, V. I., Schaake J. , Mitchell K. , Duan Q.-Y. , Chen F. , and Baker J. M. , 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104 (D16), 19 56919 585.

    • Search Google Scholar
    • Export Citation
  • Koren, V. I., Smith M. B. , Wang D. , and Zhang Z. , 2000: Use of soil property data in the derivation of conceptual rainfall-runoff model parameters. Preprints, 15th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 2.16. [Available online at http://ams.confex.com/ams/annual2000/techprogram/paper_6074.htm.]

    • Search Google Scholar
    • Export Citation
  • Koren, V. I., Smith M. , and Duan Q. , 2003: Use of a priori parameter estimates in the derivation of spatially consistent parameter sets of rainfall-runoff models. Calibration of Watershed Models, Q. Duan et al., Eds., Vol. 6, Water Science and Applications, Amer. Geophys. Union, 239–254.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model 1. Model structure. J. Geophys. Res., 105 (D20), 24 80924 822.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140.

  • Livneh, B., Xia Y. , Mitchell K. E. , Ek M. B. , and Lettenmaier D. P. , 2010: Noah LSM snow model diagnostics and enhancements. J. Hydrometeor., 11, 721738.

    • Search Google Scholar
    • Export Citation
  • Loescher, H. W., Law B. E. , Mahrt L. , Hollinger D. , Campbell J. L. , and Wofsy S. E. , 2006: Uncertainties in, and interpretation of, carbon flux estimates using the eddy covariance technique. J. Geophys. Res., 111, D21S90, doi:10.1029/2005JD006932.

    • Search Google Scholar
    • Export Citation
  • Mahmood, R., and Hubbard K. G. , 2003: Simulating sensitivity of soil moisture and evapotranspiration under heterogeneous soils and land uses. J. Hydrol., 280, 7290.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and Ek M. , 1984: The influence of atmospheric stability on potential evaporation. J. Climate Appl. Meteor., 23, 222234.

  • Mahrt, L., and Pan H. L. , 1984: A two-layer model of soil hydrology. Bound.-Layer Meteor., 29, 120.

  • Maurer, E. P., Wood A. W. , Adam J. C. , Lettenmaier D. P. , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251.

    • Search Google Scholar
    • Export Citation
  • McCumber, M., and Pielke R. A. , 1981: Simulation of effects of surface fluxes of heat and moisture in a mesoscale numerical model. Part 1: Soil layer. J. Geophys. Res., 86, 99299938.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., Betancourt J. , Falkenmark M. , Hirsch R. M. , Kundzewicz Z. W. , Lettenmaier D. P. , and Stouffer R. J. , 2008: Stationarity is dead: Whither water management? Science, 319, 573574.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., Cherkauer K. A. , and Shukla S. , 2010: Assessment of drought due to historic climate variability and projected future climate change in the midwestern United States. J. Hydrometeor., 11, 4668.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I — A discussion of principles. J. Hydrol., 10, 282290.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., Alfieri J. G. , Blanken P. D. , Chen F. , LeMone M. A. , Mitchell K. E. , and Ek M. B. , 2008: Estimation of the minimum canopy resistance for croplands and grasslands using data from the 2002 International H20 Project. Mon. Wea. Rev., 136, 44524469.

    • Search Google Scholar
    • Export Citation
  • Pan, H. L., and Mahrt L. , 1987: Interaction between soil hydrology and boundary layer development. Bound.-Layer Meteor., 38, 185202.

  • Pielke, R. A., Avissar R. , Raupach M. , Dolman A. J. , Zeng X. , and Denning A. S. , 1998: Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate. Global Change Biol., 4, 461475.

    • Search Google Scholar
    • Export Citation
  • Reed, S., Koren V. , Smith M. , Zhang Z. , Moreda F. , and Seo D.-J. , 2004: Overall distributed model intercomparison project results. J. Hydrol., 298, 2760.

    • Search Google Scholar
    • Export Citation
  • Rosero, E., Gulden L. E. , Yang Z.-L. , De Goncalves L. G. , Niu G.-Y. , and Kaheil Y. H. , 2011: Ensemble evaluation of hydrologically enhanced Noah-LSM: Partitioning of the water balance in high-resolution simulations over the Little Washita River experimental watershed. J. Hydrometeor., 12, 4564.

    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., Koren V. I. , Duan Q.-Y. , Mitchell K. E. , and Chen F. , 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 74617475.

    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., Cong S. , and Duan Q. , 2006: The US MOPEX data set. Large Sample Basin Experiments for Hydrological Model Parameterization: Results of the Model Parameter Experiment—MOPEX, V. Andrēasean et al., Eds., IAHS, 9–28.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Corti T. , Davin E. L. , Hirschi M. , Jaeger E. B. , Lehner I. , Orlowsky B. , and Teuling A. J. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99 (3–4), 125161.

    • Search Google Scholar
    • Export Citation
  • Smith, M. B., Laurine D. P. , Koren V. I. , Reed S. M. , and Zhang Z. , 2003: Hydrologic model calibration in the National Weather Service. Calibration of Watershed Models, Q. Duan et al., Eds., Water Science and Application Series, Vol. 6, Amer. Geophys. Union, 133–152.

    • Search Google Scholar
    • Export Citation
  • Smith, M. B., Seo D. , Koren V. I. , Reed S. M. , Zhang Z. , Duan Q. , Moreda F. , and Cong S. , 2004: The distributed model intercomparison project (DMIP): Motivation and experiment design. J. Hydrol., 298, 426.

    • Search Google Scholar
    • Export Citation
  • Sridhar, V., Elliot R. L. , Chen F. , and Botzge J. A. , 2002: Validation of the NOAH-OSU land surface model using surface flux measurements in Oklahoma. J. Geophys. Res., 107, 4418, doi:10.1029/2001JD001306.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., Reed P. , Wagner T. , and van Werkhoven K. , 2007: Comparing sensitivity of analysis methods to advance lumped watershed model identification and evaluation. Hydrol. Earth. Syst. Sci., 11, 793817.

    • Search Google Scholar
    • Export Citation
  • Tateishi, R., and Ahn C. H. , 1996: Mapping evapotranspiration and water balance for global land surfaces. J. Photogramm. Remote Sens., 51, 209215.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., and Ellis R. J. , 2006: Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys. Res. Lett., 33, L03404, doi:10.1029/2005GL025252.

    • Search Google Scholar
    • Export Citation
  • Thiemann, M., Trosset M. , Gupta H. , and Sorooshian S. , 2001: Bayesian recursive parameter estimation for hydrologic models. Water Resour. Res., 37, 25212535.

    • Search Google Scholar
    • Export Citation
  • Turnipseed, A. A., Blanken P. D. , Anderson D. E. , and Monson R. K. , 2002: Energy budget above a high-elevation subalpine forest in complex topography. Agric. For. Meteor., 110, 177201.

    • Search Google Scholar
    • Export Citation
  • van Werkhoven, K., Wagener T. , Reed P. , and Tang Y. , 2008: Characterization of watershed model behavior across a hydroclimatic gradient. Water Resour. Res., 44, W01429, doi:10.1029/2007WR006271.

    • Search Google Scholar
    • Export Citation
  • Verseghy, D., 1996: Preliminary considerations for runoff modelling in GCMS. Nord. Hydrol., 27, 117128.

  • Vrugt, J. A., Gupta H. V. , Dekker S. C. , Sorooshian S. , Wagener T. , and Bouten W. , 2006: Application of stochastic parameter optimization to the Sacramento Soil Moisture Accounting model. J. Hydrol., 325 (1–4), 288307.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and Kumar A. , 1998: A GCM assessment of atmospheric seasonal predictability associated with soil moisture anomalies over North America. J. Geophys. Res., 103, 28 63728 646.

    • Search Google Scholar
    • Export Citation
  • Wetzel, P. J., Argentini S. , and Boone A. , 1996: Role of land surface in controlling daytime cloud amount: Two case studies in the GCIP-SW area. J. Geophys. Res., 101 (D3), 73597370.

    • Search Google Scholar
    • Export Citation
  • Wilson, K., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agric. For. Meteor., 113 (1–4), 223243.

  • Xiu, A., and Pleim J. E. , 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteor., 40, 192209.

    • Search Google Scholar
    • Export Citation
  • Yapo, P. O., Gupta H. V. , and Sorooshian S. , 1998: Multi-objective global optimization for hydrologic models. J. Hydrol., 204, 8397.

  • Zhang, L., Dawes W. R. , and Walker G. R. , 2001: Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res., 37, 701708.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 256 108 7
PDF Downloads 131 52 4