Rainfall Retrieval and Nowcasting Based on Multispectral Satellite Images. Part I: Retrieval Study on Daytime 10-Minute Rain Rate

Xiao-Yong Zhuge School of Atmospheric Sciences, and Key Laboratory of Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing, China

Search for other papers by Xiao-Yong Zhuge in
Current site
Google Scholar
PubMed
Close
,
Fan Yu School of Atmospheric Sciences, and Key Laboratory of Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing, China

Search for other papers by Fan Yu in
Current site
Google Scholar
PubMed
Close
, and
Cheng-Wei Zhang Meteorological Observatory of Shenzhen Air Traffic Management Station of CAAC, Shenzhen, China

Search for other papers by Cheng-Wei Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study develops a method for both precipitation area and intensity retrievals based on multispectral geostationary satellite images. This method can be applied to continuous observation of large-scale precipitation so as to solve the problem from the measurements of rainfall radar and rain gauge. Satellite observation is instantaneous, whereas the rain gauge records accumulative data during a time interval. For this reason, collocated 10-min rain gauge measurements and infrared (IR) and visible (VIS) data from the FengYun-2C (FY-2C) geostationary satellite are employed to improve the accuracy of satellite rainfall retrieval. First of all, the rainfall probability identification matrix (RPIM) is used to distinguish rainfall clouds from nonrainfall clouds. This RPIM is more efficient in improving the retrieval accuracy of rainfall area than previous threshold combination screening methods. Second, the multispectral segmented curve-fitting rainfall algorithm (MSCFRA) is proposed and tested to estimate the 10-min rain rates. Rainfall samples taken from June to August 2008 are used to assess the performance of the rainfall algorithm. Assessment results show that the MSCFRA improves the accuracy of rainfall estimation for both stratiform cloud rainfall and convective cloud rainfall. These results are practically consistent with rain gauge measurements in both rainfall area division and rainfall intensity grade estimation. Furthermore, this study demonstrates that the temporal resolution of satellite detection is important and necessary in improving the precision of satellite rainfall retrieval.

Corresponding author address: Fan Yu, School of Atmospheric Sciences, Nanjing University, Nanjing 210093, Jiangsu Province, China. E-mail: yufan@mail.nju.edu.cn

Abstract

This study develops a method for both precipitation area and intensity retrievals based on multispectral geostationary satellite images. This method can be applied to continuous observation of large-scale precipitation so as to solve the problem from the measurements of rainfall radar and rain gauge. Satellite observation is instantaneous, whereas the rain gauge records accumulative data during a time interval. For this reason, collocated 10-min rain gauge measurements and infrared (IR) and visible (VIS) data from the FengYun-2C (FY-2C) geostationary satellite are employed to improve the accuracy of satellite rainfall retrieval. First of all, the rainfall probability identification matrix (RPIM) is used to distinguish rainfall clouds from nonrainfall clouds. This RPIM is more efficient in improving the retrieval accuracy of rainfall area than previous threshold combination screening methods. Second, the multispectral segmented curve-fitting rainfall algorithm (MSCFRA) is proposed and tested to estimate the 10-min rain rates. Rainfall samples taken from June to August 2008 are used to assess the performance of the rainfall algorithm. Assessment results show that the MSCFRA improves the accuracy of rainfall estimation for both stratiform cloud rainfall and convective cloud rainfall. These results are practically consistent with rain gauge measurements in both rainfall area division and rainfall intensity grade estimation. Furthermore, this study demonstrates that the temporal resolution of satellite detection is important and necessary in improving the precision of satellite rainfall retrieval.

Corresponding author address: Fan Yu, School of Atmospheric Sciences, Nanjing University, Nanjing 210093, Jiangsu Province, China. E-mail: yufan@mail.nju.edu.cn
Save
  • Adler, R. F., and Mack R. A. , 1984: Thunderstorm cloud height–rainfall rate relations for use with satellite rainfall estimation techniques. J. Climate Appl. Meteor., 23, 280296.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Negri A. J. , 1988: A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27, 3051.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., Negri A. J. , Keehn P. R. , and Hakkarinen I. M. , 1993: Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data. J. Appl. Meteor., 32, 335356.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and Meisner B. N. , 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982-84. Mon. Wea. Rev., 115, 5174.

    • Search Google Scholar
    • Export Citation
  • Ba, M. B., and Gruber A. , 2001: GOES Multispectral Rainfall Algorithm (GMSRA). J. Appl. Meteor., 40, 15001514.

  • Behrangi, A., Hsu K. , Imam B. , Sorooshian S. , and Kuligowski R. J. , 2009: Evaluating the utility of multispectral information in delineating the areal extent of precipitation. J. Hydrometeor., 10, 684700.

    • Search Google Scholar
    • Export Citation
  • Cheng, M., Brown R. , and Collier C. G. , 1993: Delineation of precipitation areas using Meteosat infrared and visible data in the region of the United Kingdom. J. Appl. Meteor., 32, 884898.

    • Search Google Scholar
    • Export Citation
  • Crosson, W. L., Duchon C. E. , Raghavan R. , and Goodman S. J. , 1996: Assessment of rainfall estimates using a standard ZR relationship and the probability matching method applied to composite radar data in central Florida. J. Appl. Meteor., 35, 12031219.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., 1997: Special sensor microwave imager derived global rainfall estimates for climatological applications. J. Geophys. Res., 102, 16 71516 735.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Li Q. , 2002: Detailed analysis of the error associated with the rainfall retrieved by the NOAA/NESDIS Special Sensor Microwave/Imager algorithm 2. Rainfall over land. J. Geophys. Res., 107, 4680, doi:10.1029/2001JD001172.

    • Search Google Scholar
    • Export Citation
  • Griffith, C. G., Woodley W. L. , Gruber P. G. , Martin D. W. , Stout J. , and Sikdar D. N. , 1978: Rain estimation from geosynchronous satellite data—Visible and infrared studies. Mon. Wea. Rev., 106, 11531171.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Hsu K. , Soorooshian S. , and Gao X. , 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43, 18341852.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., Gupta H. V. , Gao X. , and Sorooshian S. , 1999: Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resour. Res., 35, 16051618.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Rudolf B. , Schneider U. , and Keehn P. R. , 1995: Global precipitation estimates based on a technique for combining satellite-based estimates, rain-gauge analysis, and NWP model precipitation information. J. Climate, 8, 12841295.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Morrissey M. M. , Bolvin D. T. , Curtis S. , Joyce R. , McGavock B. , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., Kniveton D. R. , Todd M. C. , and Bellerby T. J. , 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4, 10881104.

    • Search Google Scholar
    • Export Citation
  • Kuligowski, R. J., 2002: A self-calibrating real-time GOES rainfall algorithm for short-term rainfall estimates. J. Hydrometeor., 3, 112130.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Giglio L. , 1995: A method for combining passive microwave and infrared rainfall observations. J. Atmos. Oceanic Technol., 12, 3345.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Olson W. S. , and Giglio L. , 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820.

    • Search Google Scholar
    • Export Citation
  • Lethbridge, M., 1967: Precipitation probability and satellite radiation data. Mon. Wea. Rev., 95, 487490.

  • Lovejoy, S., and Austin G. L. , 1979: The delineation of rain areas from visible and infrared satellite data for GATE and mid-latitudes. Atmos.–Ocean, 17, 10481054.

    • Search Google Scholar
    • Export Citation
  • Luque, A., Gómez I. , and Manso M. , 2006: Convective rainfall rate multi-channel algorithm for Meteosat-7 and radar derived calibration matrices. Atmósfera, 19, 145168.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., and Ferraro R. R. , 2003: Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR-E microwave land rainfall algorithms. J. Geophys. Res., 108, 8382, doi:10.1029/2001JD001512.

    • Search Google Scholar
    • Export Citation
  • Miller, S. W., Arkin P. A. , and Joyce R. , 2001: A combined microwave/infrared rain rate algorithm. Int. J. Remote Sens., 22, 32853307.

    • Search Google Scholar
    • Export Citation
  • Morrissey, M. L., and Janowiak J. E. , 1996: Sampling-induced conditional biases in satellite climate-scale rainfall estimates. J. Appl. Meteor., 35, 541548.

    • Search Google Scholar
    • Export Citation
  • Nauss, T., and Kokhanovsky A. A. , 2006: Discriminating raining from non-raining clouds at mid-latitudes using multispectral satellite data. Atmos. Chem. Phys. Discuss., 6, 13851398.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Improved method and uncertainties. J. Appl. Meteor. Climatol., 45, 702720.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 17921796.

  • Rosenfeld, D., and Gutman G. , 1994: Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data. J. Atmos. Res., 34, 259283.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and Lensky I. M. , 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476.

    • Search Google Scholar
    • Export Citation
  • Scofield, R. A., 1987: The NESDIS operational convective precipitation-estimation technique. Mon. Wea. Rev., 115, 17731792.

  • Soman, V. V., Valdes J. B. , and North G. , 1995: Satellite sampling and the diurnal cycle statistics of Darwin rainfall data. J. Appl. Meteor., 34, 24812490.

    • Search Google Scholar
    • Export Citation
  • Stout, J. E., Martin D. W. , and Sikdar D. H. , 1979: Estimating GATE rainfall with geosynchronous satellite images. Mon. Wea. Rev., 107, 585598.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., Kidd C. , Levizzani V. , and Marzano F. S. , 2004: A neural networks–based fusion technique to estimate half-hourly rainfall estimates at 0.1° resolution from satellite passive microwave and infrared data. J. Appl. Meteor., 43, 576594.

    • Search Google Scholar
    • Export Citation
  • Todd, M. C., Kidd C. , Kniveton D. , and Bellerby T. J. , 2001: A combined satellite infrared and passive microwave technique for estimation of small-scale rainfall. J. Atmos. Oceanic Technol., 18, 742755.

    • Search Google Scholar
    • Export Citation
  • Vicente, G. A., Scofield R. A. , and Menzel W. P. , 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79, 18831898.

    • Search Google Scholar
    • Export Citation
  • Wang, C., Yu F. , and Zhao Y. , 2008: Inversion study of rainfall intensity field at all time during Mei-Yu period by using MTSAT multi-spectral imagery. Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques, and Applications II, A. M. Larar, M. J. Lynch, and M. Suzuki, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7149), 1–12.

    • Search Google Scholar
    • Export Citation
  • Wei, C., Hung W. , and Cheng K. , 2006: A multispectral spatial convolution approach of rainfall forecasting using weather satellite imagery. Adv. Space Res., 37, 747753.

    • Search Google Scholar
    • Export Citation
  • Woodley, W. L., Olsen A. R. , Herndon A. , and Wiggert V. , 1975: Comparison of gage and radar methods of convective rain measurement. J. Appl. Meteor., 14, 909928.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1996: Analyses of global monthly precipitation using rain-gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840858.

    • Search Google Scholar
    • Export Citation
  • Xu, L., Gao X. , Sorooshian S. , Arkin P. A. , and Iman B. , 1999: A microwave infrared threshold technique to improve the GOES precipitation index. J. Appl. Meteor., 38, 569579.

    • Search Google Scholar
    • Export Citation
  • Yan, H., and Yang S. , 2007: A MODIS dual spectral rain algorithm. J. Appl. Meteor. Climatol., 46, 13051323.

  • Yu, F., 1998: Extraction of meteorological characteristic elements from GMS images and their application to mesoscale NWP (in Chinese). Ph.D. dissertation, Nanjing University, 137 pp.

    • Search Google Scholar
    • Export Citation
  • Yu, F., 2003: Analysis of rainfall intensity field by using multi-spectral GMS imagery (in Chinese). Acta. Meteor. Sin., 61, 334345.

  • Yu, F., Zhuge X. , and Zhang C. , 2011: Rainfall retrieval and nowcasting based on multispectral satellite images. Part II: Retrieval study on daytime half-hour rain rate. J. Hydrometeor., 12, 12711285.

    • Search Google Scholar
    • Export Citation
  • Zhang, P., Du B. , and Dai T. , 2001: Radar Meteorology. China Meteorological Press, 499 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 145 58 8
PDF Downloads 111 40 7