Observed Land–Atmosphere Coupling from Satellite Remote Sensing and Reanalysis

Craig R. Ferguson Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Craig R. Ferguson in
Current site
Google Scholar
PubMed
Close
and
Eric F. Wood Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Eric F. Wood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The lack of observational data for use in evaluating the realism of model-based land–atmosphere feedback signal and strength has been deemed a major obstacle to future improvements to seasonal weather prediction by the Global Land–Atmosphere Coupling Experiment (GLACE). To address this need, a 7-yr (2002–09) satellite remote sensing data record is exploited to produce for the first time global maps of predominant coupling signals. Specifically, a previously implemented convective triggering potential (CTP)–humidity index (HI) framework for describing atmospheric controls on soil moisture–rainfall feedbacks is revisited and generalized for global application using CTP and HI from the Atmospheric Infrared Sounder (AIRS), soil moisture from the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E), and the U.S. Climate Prediction Center (CPC) merged satellite rainfall product (CMORPH). Based on observations taken during an AMSR-E-derived convective rainfall season, the global land area is categorized into four convective regimes: 1) those with atmospheric conditions favoring deep convection over wet soils, 2) those with atmospheric conditions favoring deep convection over dry soils, 3) those with atmospheric conditions that suppress convection over any land surface, and 4) those with atmospheric conditions that support convection over any land surface. Classification maps are produced using both the original and modified frameworks, and later contrasted with similarly derived maps using inputs from the National Aeronautics and Space Administration (NASA) Modern Era Retrospective Analysis for Research and Applications (MERRA). Both AIRS and MERRA datasets of CTP and HI are validated using radiosonde observations. The combinations of methods and data sources employed in this study enable evaluation of not only the sensitivity of the classification schemes themselves to their inputs, but also the uncertainty in the resultant classification maps. The findings are summarized for 20 climatic regions and three GLACE coupling hot spots, as well as zonally and globally. Globally, of the four-class scheme, regions for which convection is favored over wet and dry soils accounted for the greatest and least extent, respectively. Despite vast differences among the maps, many geographically large regions of concurrence exist. Through its ability to compensate for the latitudinally varying CTP–HI–rainfall tendency characteristics observed in this study, the revised classification framework overcomes limitations of the original framework. By identifying regions where coupling persists using satellite remote sensing this study provides the first observationally based guidance for future spatially and temporally focused studies of land–atmosphere interactions. Joint distributions of CTP and HI and soil moisture, rainfall occurrence, and depth demonstrate the relevance of CTP and HI in coupling studies and their potential value in future model evaluation, rainfall forecast, and/or hydrologic consistency applications.

Current affiliation: Department of Hydrology and Water Resources Engineering, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.

Corresponding author address: Craig R. Ferguson, Department of Hydrology and Water Resources Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan. E-mail: cferguso@rainbow.iis.u-tokyo.ac.jp

Abstract

The lack of observational data for use in evaluating the realism of model-based land–atmosphere feedback signal and strength has been deemed a major obstacle to future improvements to seasonal weather prediction by the Global Land–Atmosphere Coupling Experiment (GLACE). To address this need, a 7-yr (2002–09) satellite remote sensing data record is exploited to produce for the first time global maps of predominant coupling signals. Specifically, a previously implemented convective triggering potential (CTP)–humidity index (HI) framework for describing atmospheric controls on soil moisture–rainfall feedbacks is revisited and generalized for global application using CTP and HI from the Atmospheric Infrared Sounder (AIRS), soil moisture from the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E), and the U.S. Climate Prediction Center (CPC) merged satellite rainfall product (CMORPH). Based on observations taken during an AMSR-E-derived convective rainfall season, the global land area is categorized into four convective regimes: 1) those with atmospheric conditions favoring deep convection over wet soils, 2) those with atmospheric conditions favoring deep convection over dry soils, 3) those with atmospheric conditions that suppress convection over any land surface, and 4) those with atmospheric conditions that support convection over any land surface. Classification maps are produced using both the original and modified frameworks, and later contrasted with similarly derived maps using inputs from the National Aeronautics and Space Administration (NASA) Modern Era Retrospective Analysis for Research and Applications (MERRA). Both AIRS and MERRA datasets of CTP and HI are validated using radiosonde observations. The combinations of methods and data sources employed in this study enable evaluation of not only the sensitivity of the classification schemes themselves to their inputs, but also the uncertainty in the resultant classification maps. The findings are summarized for 20 climatic regions and three GLACE coupling hot spots, as well as zonally and globally. Globally, of the four-class scheme, regions for which convection is favored over wet and dry soils accounted for the greatest and least extent, respectively. Despite vast differences among the maps, many geographically large regions of concurrence exist. Through its ability to compensate for the latitudinally varying CTP–HI–rainfall tendency characteristics observed in this study, the revised classification framework overcomes limitations of the original framework. By identifying regions where coupling persists using satellite remote sensing this study provides the first observationally based guidance for future spatially and temporally focused studies of land–atmosphere interactions. Joint distributions of CTP and HI and soil moisture, rainfall occurrence, and depth demonstrate the relevance of CTP and HI in coupling studies and their potential value in future model evaluation, rainfall forecast, and/or hydrologic consistency applications.

Current affiliation: Department of Hydrology and Water Resources Engineering, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.

Corresponding author address: Craig R. Ferguson, Department of Hydrology and Water Resources Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan. E-mail: cferguso@rainbow.iis.u-tokyo.ac.jp
Save
  • Adler, R., Wilheit T. , Kummerow C. , and Ferraro R. , 2007: AMSR-E/Aqua L2B Global Swath Rain Rate/Type GSFC Profiling Algorithm. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/ae_rain.html.]

    • Search Google Scholar
    • Export Citation
  • Agustí-Panareda, A., and Coauthors, 2009: Radiosonde humidity bias correction over the West African region for the special AMMA reanalysis at ECMWF. Quart. J. Roy. Meteor. Soc., 135, 595617.

    • Search Google Scholar
    • Export Citation
  • Aonashi, K., and Coauthors, 2009: GSMaP passive microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87, 119136.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., Wolfson N. , and Terry J. , 1993: The effect of SST and soil moisture anomalies on GLA model simulations of the 1988 U.S. summer drought. J. Climate, 6, 20342048.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2004: Understanding hydrometeorology using global models. Bull. Amer. Meteor. Soc., 85, 16731688.

  • Betts, A. K., 2009: Land-surface-atmosphere coupling in observations and models. J. Adv. Model. Earth Syst., 1, 4, doi:10.3894/JAMES.2009.1.4.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Ball J. H. , 1995: The FIFE surface diurnal cycle climate. J. Geophys. Res., 100D, 25 67925 693.

  • Betts, A. K., and Dias M. A. F. S. , 2010: Progress in understanding land-surface-atmosphere coupling from LBA research. J. Adv. Model. Earth Syst., 2, 6, doi:10.3894/JAMES.2010.2.6.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , Beljaars A. C. M. , Miller M. J. , and Viterbo P. A. , 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101D, 72097225.

    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., Takacs L. L. , DaSilva A. M. , and Ledvina D. , 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926.

    • Search Google Scholar
    • Export Citation
  • Chen, M., Shi W. , Xie P. , Silva V. B. S. , Kousky V. E. , Higgins R. W. , and Janowiak J. E. , 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., Bonan G. B. , and Levis S. , 2006: Soil moisture feedbacks to precipitation in southern Africa. J. Climate, 19, 41984206.

  • Dirmeyer, P. A., 2006: The hydrologic feedback pathway for land–climate coupling. J. Hydrometeor., 7, 857867.

  • Dirmeyer, P. A., Koster R. D. , and Guo Z. C. , 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7, 11771198.

    • Search Google Scholar
    • Export Citation
  • Divakarla, M. G., Barnet C. D. , Goldberg M. D. , McMillin L. M. , Maddy E. , Wolf W. , Zhou L. H. , and Liu X. P. , 2006: Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res., 111, D09S15, doi:10.1029/2005JD006116.

    • Search Google Scholar
    • Export Citation
  • Douville, H., 2002: Influence of soil moisture on the Asian and African monsoons. Part II: Interannual variability. J. Climate, 15, 701720.

    • Search Google Scholar
    • Export Citation
  • Douville, H., 2003: Assessing the influence of soil moisture on seasonal climate variability with AGCMs. J. Hydrometeor., 4, 10441066.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776.

  • Eltahir, E. A. B., and Pal J. S. , 1996: Relationship between surface conditions and subsequent rainfall in convective storms. J. Geophys. Res., 101D, 26 23726 245.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., Rodriguez-Iturbe I. , and Castelli F. , 1996: Mutual interaction of soil moisture state and atmospheric processes. J. Hydrol., 184, 317.

    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., and Shukla J. , 1999: Impact of initial soil wetness on seasonal atmospheric prediction. J. Climate, 12, 31673180.

  • Ferguson, C. R., and Wood E. F. , 2010a: An evaluation of satellite remote sensing data products for land surface hydrology: Atmospheric Infrared Sounder. J. Hydrometeor., 11, 12341262.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and Wood E. F. , 2010b: Observing land-atmosphere interaction globally with satellite remote sensing. Proc. Earth Observation and Water Cycle Science Symp., Frascati, Italy, ESA, 8.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and Wood E. F. , 2010c: Quantifying land–atmosphere interaction with satellite remote sensing: Current capabilities, findings, and limits. Extended Abstracts, 24th Conf. on Hydrology, Atlanta, GA, Amer. Meteor. Soc., J13.4. [Available online at http://ams.confex.com/ams/90annual/techprogram/paper_163465.htm.]

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., Slingo J. M. , Palmer T. N. , and Hoskins B. J. , 1999: The effect of land-surface feedbacks on the monsoon circulation. Quart. J. Roy. Meteor. Soc., 125, 15271550.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003c: Atmospheric controls on soil moisture-boundary layer interactions: Three-dimensional wind effects. J. Geophys. Res., 108, 8385, doi:10.1029/2001JD001515.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., Seneviratne S. I. , Lüthi D. , and Schär C. , 2007a: Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, L06707, doi:10.1029/2006GL029068.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., Seneviratne S. I. , Vidale P. L. , Lüthi D. , and Schär C. , 2007b: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099.

    • Search Google Scholar
    • Export Citation
  • Gao, W. H., Zhao F. S. , Xu Y. F. , and Feng X. , 2008: Validation of the surface air temperature products retrieved from the atmospheric infrared sounder over China. IEEE Trans. Geosci. Remote Sens., 46, 17831789.

    • Search Google Scholar
    • Export Citation
  • Guo, Z. C., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625.

    • Search Google Scholar
    • Export Citation
  • Haiden, T., 1997: An analytical study of cumulus onset. Quart. J. Roy. Meteor. Soc., 123, 19451960.

  • Hohenegger, C., Brockhaus P. , Bretherton C. S. , and Schär C. , 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020.

    • Search Google Scholar
    • Export Citation
  • Hsu, K.-L., Gao X. , Sorooshian S. , and Gupta H. V. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190.

    • Search Google Scholar
    • Export Citation
  • Hsu, K.-L., Gupta H. V. , Gao X. , and Sorooshian S. , 1999: Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resour. Res., 35, 16051618.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model 1. Model structure. J. Geophys. Res., 105D, 24 80924 822.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140.

  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP Project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820.

    • Search Google Scholar
    • Export Citation
  • Li, L., Njoku E. G. , Im E. , Chang P. S. , and Germain K. S. , 2004: A preliminary survey of radio-frequency interference over the US in Aqua AMSR-E data. IEEE Trans. Geosci. Remote Sens., 42, 380390.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Muller J.-P. , and Cross P. , 2003: Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurements. J. Geophys. Res., 108, 4651, doi:10.1029/2003JD003372.

    • Search Google Scholar
    • Export Citation
  • McCabe, M. F., Wood E. F. , Wójcik R. , Pan M. , Sheffield J. , Gao H. , and Su H. , 2008: Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies. Remote Sens. Environ., 112, 430444.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., and Ferraro R. R. , 2003: Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR-E microwave land rainfall algorithms. J. Geophys. Res., 108, 8382, doi:10.1029/2001JD001512.

    • Search Google Scholar
    • Export Citation
  • McMillin, L. M., Zhao J. , Raja M. K. R. V. , Gutman S. I. , and Yoe J. G. , 2007: Radiosonde humidity corrections and potential Atmospheric Infrared Sounder moisture accuracy. J. Geophys. Res., 112, D13S90, doi:10.1029/2005JD006109.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., Vömel H. , Paukkunen A. , Heymsfield A. J. , and Oltmans S. J. , 2001: Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. J. Atmos. Oceanic Technol., 18, 135156.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., Paukkunen A. , Vömel H. , and Oltmans S. J. , 2004: Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Oceanic Technol., 21, 13051327.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., Vömel H. , Whiteman D. N. , Lesht B. M. , Schmidlin F. J. , and Russo F. , 2006: Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. J. Geophys. Res., 111, D09S10, doi:10.1029/2005JD006083.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2011: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2009: A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Climate Dyn., 32, 11551171.

    • Search Google Scholar
    • Export Citation
  • Olsen, E. T., Ed., 2007: AIRS/AMSU/HSB version 5 L2 support pressure levels. NASA JPL Tech. Rep., 3 pp. [Available online at http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v5_docs/AIRS_V5_Release_User_Docs/V5_L2_Support_Pressure_Levels.pdf.]

    • Search Google Scholar
    • Export Citation
  • Owe, M., de Jeu R. , and Holmes T. , 2008: Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res., 113, F01002, doi:10.1029/2007JF000769.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., Thorncroft C. D. , Burton R. R. , and Diongue-Niang A. , 2005: Analysis of the African easterly jet, using aircraft observations from the JET2000 experiment. Quart. J. Roy. Meteor. Soc., 131, 14611482.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and Coauthors, 2008: The AMMA radiosonde program and its implications for the future of atmospheric monitoring over Africa. Bull. Amer. Meteor. Soc., 89, 10151027.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J. L., Thorncroft C. D. , Diedhiou A. , Lebel T. , Parker D. J. , and Polcher J. , 2006: African Monsoon Multidisciplinary Analysis: An international research project and field campaign. Bull. Amer. Meteor. Soc., 87, 17391746.

    • Search Google Scholar
    • Export Citation
  • Riemann-Campe, K., Fraedrich K. , and Lunkeit F. , 2009: Global climatology of Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN) in ERA-40 reanalysis. Atmos. Res., 93, 534545.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008a: The GEOS-5 data assimilation system—Documentation of versions 5.0.1 and 5.1.0. NASA GSFC Tech. Rep. NASA/TM-2007-104606, 92 pp.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008b: The GEOS-5 data assimilation system—Documentation of versions 5.0.1, 5.1.0 and 5.2.0. NASA GSFC Tech. Rep. TM-2008-104606, 101 pp.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Peters-Lidard C. D. , Kumar S. V. , Alonge C. , and Tao W. K. , 2009: A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J. Hydrometeor., 10, 577599.

    • Search Google Scholar
    • Export Citation
  • Schär, C., Lüthi D. , Beyerle U. , and Heise E. , 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Lüthi D. , Litschi M. , and Schär C. , 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209.

    • Search Google Scholar
    • Export Citation
  • Shen, Y., Xiong A. Y. , Wang Y. , and Xie P. P. , 2010: Performance of high-resolution satellite precipitation products over China. J. Geophys. Res., 115, D02114, doi:10.1029/2009JD012097.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K. L. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., Mocko D. M. , Lau K.-M. , and Atlas R. , 2003: Simulating the Midwestern U.S. drought of 1988 with a GCM. J. Climate, 16, 39463965.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., Barnet C. D. , and Blaisdell J. M. , 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41, 390409.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., Barnet C. D. , Blaisdell J. M. , Iredell L. , Keita F. , Kouvaris L. , Molnar G. , and Chahine M. , 2006: Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit as a function of fractional cloud cover. J. Geophys. Res., 111, D09S17, doi:10.1029/2005JD006272.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., Blaisdell J. M. , Iredell L. , and Keita F. , 2011: Improved temperature sounding and quality control methodology using AIRS/AMSU data: The AIRS Science Team Version 5 retrieval algorithm. IEEE Trans. Geosci. Remote Sens., 49, 883907.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., and Ellis R. J. , 2006: Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys. Res. Lett., 33, L03404, doi:10.1029/2005GL025252.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., Peters-Lidard C. D. , Adler R. F. , Kubota T. , and Ushio T. , 2010: Evaluation of GSMaP precipitation estimates over the contiguous United States. J. Hydrometeor., 11, 566574.

    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., and Coauthors, 2006: Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res., 111, D09S14, doi:10.1029/2005JD006103.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Hoar T. J. , 1997: El Niño and climate change. Geophys. Res. Lett., 24, 30573060.

  • Turk, F. J., and Miller S. D. , 2005: Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens., 43, 10591069.

    • Search Google Scholar
    • Export Citation
  • Ushio, T., and Coauthors, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87, 137151.

    • Search Google Scholar
    • Export Citation
  • Van den Hurk, B., and Blyth E. B. , 2008: WATCH/LoCo workshop report. GEWEX News, Vol. 18, No. 4, International GEWEX Project Office, Silver Spring, MD, 12–14.

    • Search Google Scholar
    • Export Citation
  • Van den Hurk, B., and Van Meijgaard E. , 2010: Diagnosing land–atmosphere interaction from a regional climate model simulation over West Africa. J. Hydrometeor., 11, 467481.

    • Search Google Scholar
    • Export Citation
  • Vömel, H., and Coauthors, 2007: Radiation dry bias of the Vaisala RS92 humidity sensor. J. Atmos. Oceanic Technol., 24, 953963.

  • Wagner, W., Naeimi V. , Scipal K. , de Jeu R. , and Martínez-Fernández J. , 2007: Soil moisture from operational meteorological satellites. Hydrogeol. J., 15, 121131.

    • Search Google Scholar
    • Export Citation
  • Wang, J. H., and Zhang L. Y. , 2008: Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements. J. Climate, 21, 22182238.

    • Search Google Scholar
    • Export Citation
  • Wang, J. H., Cole H. L. , Carlson D. J. , Miller E. R. , Beierle K. , Paukkunen A. , and Laine T. K. , 2002: Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol., 19, 9811002.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1983: Mechanisms of monsoon low-frequency variability—Surface hydrological effects. J. Atmos. Sci., 40, 21102124.

  • Wilheit, T., Kummerow C. D. , and Ferraro R. , 2003: Rainfall algorithms for AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 204214.

  • WMO, 2009: Manual on codes, volume I.1 - part A. World Meteorological Organization Publ. 306, 506 pp. [Available online at http://www.wmo.int/pages/prog/www/WMOCodes/VolumeI1.html.]

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., Ed., 1991: Land Surface, Atmosphere Interactions for Climate Modeling: Observations, Models, and Analysis. Kluwer Academic Publishers, 314 pp.

    • Search Google Scholar
    • Export Citation
  • Xie, P., Chen M. , Yang S. , Yatagai A. , Hayasaka T. , Fukushima Y. , Liu C. , 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626.

    • Search Google Scholar
    • Export Citation
  • Yeh, T.-C., Wetherald R. T. , and Manabe S. , 1984: The effect of soil moisture on the short-term climate and hydrology change—A numerical experiment. Mon. Wea. Rev., 112, 474490.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., Fujita M. , Sato N. , Fujiwara M. , Inai Y. , and Hasebe F. , 2008: Correction for radiation dry bias found in RS92 radiosonde data during the MISMO field experiment. SOLA, 4, 1316.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., Cecil D. J. , Liu C. , Nesbitt S. W. , and Yorty D. P. , 2006: Where are the most intense thunderstorms on earth? Bull. Amer. Meteor. Soc., 87, 10571071.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1381 366 36
PDF Downloads 941 197 18