Understanding the Sensitivity of Different Drought Metrics to the Drivers of Drought under Increased Atmospheric CO2

Eleanor J. Burke Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Eleanor J. Burke in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A perturbed physics Hadley Centre climate model ensemble was used to study changes in drought on doubling atmospheric CO2. The drought metrics analyzed were based on 1) precipitation anomalies, 2) soil moisture anomalies, and 3) the Palmer drought severity index (PDSI). Drought was assumed to occur 17% of the time under single CO2. On doubling CO2, in general, PDSI drought occurs more often than soil moisture drought, which occurs more often than precipitation drought. This paper explores the relative sensitivity of each drought metric to changes in the main drivers of drought, namely precipitation and available energy. Drought tends to increase when the mean precipitation decreases, the mean available energy increases, the standard deviation of precipitation increases, and the standard deviation of available energy decreases. Simple linear approximations show that the sensitivity of drought to changes in mean precipitation is similar for the three different metrics. However, the sensitivity of drought to changes in the mean available energy (which is projected to increase under increased atmospheric CO2) is highly dependent on metric: with PDSI drought the most sensitive, soil moisture less sensitive, and precipitation independent of available energy. Drought metrics are only slightly sensitive to changes in the variability of the drivers. An additional driver of drought is the response of plants to increased CO2. This process reduces evapotranspiration and increases soil moisture, and generally causes less soil moisture drought. In contrast, the associated increase in available energy generally causes an increase in PDSI drought. These differing sensitivities need to be taken into consideration when developing adaptation strategies.

Corresponding author address: Eleanor J. Burke, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: eleanor.burke@metoffice.gov.uk

Abstract

A perturbed physics Hadley Centre climate model ensemble was used to study changes in drought on doubling atmospheric CO2. The drought metrics analyzed were based on 1) precipitation anomalies, 2) soil moisture anomalies, and 3) the Palmer drought severity index (PDSI). Drought was assumed to occur 17% of the time under single CO2. On doubling CO2, in general, PDSI drought occurs more often than soil moisture drought, which occurs more often than precipitation drought. This paper explores the relative sensitivity of each drought metric to changes in the main drivers of drought, namely precipitation and available energy. Drought tends to increase when the mean precipitation decreases, the mean available energy increases, the standard deviation of precipitation increases, and the standard deviation of available energy decreases. Simple linear approximations show that the sensitivity of drought to changes in mean precipitation is similar for the three different metrics. However, the sensitivity of drought to changes in the mean available energy (which is projected to increase under increased atmospheric CO2) is highly dependent on metric: with PDSI drought the most sensitive, soil moisture less sensitive, and precipitation independent of available energy. Drought metrics are only slightly sensitive to changes in the variability of the drivers. An additional driver of drought is the response of plants to increased CO2. This process reduces evapotranspiration and increases soil moisture, and generally causes less soil moisture drought. In contrast, the associated increase in available energy generally causes an increase in PDSI drought. These differing sensitivities need to be taken into consideration when developing adaptation strategies.

Corresponding author address: Eleanor J. Burke, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: eleanor.burke@metoffice.gov.uk
Save
  • Alley, W. M., 1984: The Palmer Drought Severity Index: Limitations and assumptions. J. Climate Appl. Meteor., 23, 11001109.

  • Barros, A. P., and Bowden G. J. , 2008: Toward long-lead operational forecasts of drought: An experimental study in the Murray-Darling River basin. J. Hydrol., 357, 349367.

    • Search Google Scholar
    • Export Citation
  • Bell, V. A., Gedney N. , Kay A. L. , Smith R. , Jones R. G. , and Moore R. J. , 2011: Estimating potential evaporation from vegetated surfaces for water management impact assessments using climate model output. J. Hydrometeor., 12, 11271136.

    • Search Google Scholar
    • Export Citation
  • Bernacchi, C. J., Kimball B. A. , Quarles D. R. , Long S. P. , and Ort D. R. , 2007: Decreases in stomatal conductance of soybean under open-air elevation of CO2 are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol., 143, 134144.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., and Coauthors, 2007: Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature, 448, 10371040.

    • Search Google Scholar
    • Export Citation
  • Blöschl, G., and Coauthors, 2007: At what scales do climate variability and land cover change impact on flooding and low flows? Hydrol. Processes, 21, 12411247.

    • Search Google Scholar
    • Export Citation
  • Burke, E. J., and Brown S. J. , 2008: Evaluating uncertainties in the projection of future drought. J. Hydrometeor., 9, 292299.

  • Burke, E. J., Brown S. J. , and Christidis N. , 2006: Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J. Hydrometeor., 7, 11131125.

    • Search Google Scholar
    • Export Citation
  • Christidis, N., Stott P. A. , Jones G. S. , Shiogama H. , Nozawa T. , and Luterbacher J. , 2011: Human activity and anomalously warm seasons in Europe. Int. J. Climatol., doi:10.1002/joc.2262, in press.

    • Search Google Scholar
    • Export Citation
  • Collins, M., Booth B. B. B. , Bhaskaran B. , Harris G. R. , Murphy J. M. , Sexton D. M. H. , and Webb M. , 2010: Climate model errors, feedbacks and forcings: A comparison of perturbed physics and multi-model ensembles. Climate Dyn., 36, 17371766.

    • Search Google Scholar
    • Export Citation
  • Covey, C., AchutaRao K. M. , Cubasch U. , Jones P. , Lambert S. J. , Mann M. E. , Phillips T. J. and Taylor K. E. , 2003: An overview of results from the Coupled Model Intercomparison Project. Global Planet. Change, 37, 103133.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., Betts R. A. , Bunton C. B. , Essery R. H. , Rowntree P. R. , and Smith J. , 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15, 183203.

    • Search Google Scholar
    • Export Citation
  • Dai, A., Trenberth K. E. , and Qian T. , 2004: A global data set of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5, 11171130.

    • Search Google Scholar
    • Export Citation
  • Field, C., Jackson R. , and Mooney H. , 1995: Stomatal responses to increased CO2: Implications from the plant to the global scale. Plant Cell Environ., 18, 12141255.

    • Search Google Scholar
    • Export Citation
  • Gedney, N., Cox P. M. , Douville H. , Polcher J. , and Valdes P. J. , 2000: Characterizing GCM land surface schemes to understand their responses to climate change. J. Climate, 13, 30663079.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Francisco R. , 2000: Evaluating uncertainties in the prediction of regional climate change. Geophys. Res. Lett., 27, 12951298.

    • Search Google Scholar
    • Export Citation
  • Johns, T. C., and Coauthors, 2003: Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Climate Dyn., 20, 583612, doi:10.1007/s00382-002-0296-y.

    • Search Google Scholar
    • Export Citation
  • Kergoat, L., Lafont S. , Douville H. , Berthelot B. , Dedieu G. , Planton S. , and Royer J.-F. , 2002: Impact of doubled CO2 on global-scale leaf area index and evapotranspiration: Conflicting stomatal conductance and LAI responses. J. Geophys. Res., 107, 4808, doi:10.1029/2001JD001245.

    • Search Google Scholar
    • Export Citation
  • Keyantash, J., and Dracup J. A. , 2002: The quantification of drought: An evaluation of drought indices. Bull. Amer. Meteor. Soc., 83, 11671180.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 1999: A simple framework for examining the interannual variability of land surface moisture fluxes. J. Climate, 12, 19111917.

    • Search Google Scholar
    • Export Citation
  • Koutsoyiannis, D., Efstratiadis A. , Mamassis N. , and Christofides A. , 2008: On the credibility of climate predictions. Hydrol. Sci. J., 53, 671684.

    • Search Google Scholar
    • Export Citation
  • Levis, S., Foley J. A. , and Pollard D. , 2000: Large scale vegetation feedbacks on a doubled CO2 climate. J. Climate, 13, 13131325.

  • Medlyn, B. E., and Coauthors, 2001: Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: A synthesis. New Phytol., 149, 247264, doi:10.1046/j.1469-8137.2001.00028.x.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Morison, J. I. L., 1998: Stomatal response to increased CO2 concentration. J. Exp. Bot., 49, 443452.

  • Murphy, J. M., Sexton D. M. H. , Barnett D. N. , Jones G. S. , Webb M. J. , Collins M. , and Stainforth D. A. , 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., Booth B. B. B. , Collins M. , Harris G. R. , Sexton D. M. H. , and Webb M. J. , 2007: A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Philos. Trans. Roy. Soc. London, A365, 19932028, doi:10.1098/rsta.2007.2077.

    • Search Google Scholar
    • Export Citation
  • Owensby, C. E., Ham J. M. , Knapp A. K. , and Auen L. M. , 1999: Biomass production and species composition change in a tall grass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Global Change Biol., 5, 497506.

    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological drought. U.S. Weather Bureau Research Paper 45, 85 pp.

  • Pope, V. D., Gallani M. , Rowntree P. R. , and Stratton R. A. , 2000: The impact of new physical parameterizations in the Hadley Centre climate model—HadAM3. Climate Dyn., 16, 123146.

    • Search Google Scholar
    • Export Citation
  • Rougier, J. C., Sexton D. M. H. , Murphy J. M. , and Stainforth D. , 2009: Analyzing the climate sensitivity of the HadSM3 climate model using ensembles from different but related experiments. J. Climate, 22, 35403557.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 2009: Projected midlatitude continental summer drying: North America versus Europe. J. Climate, 22, 28132816.

  • Sheffield, J., and Wood E. F. , 2007: Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res., 112, D17115, doi:10.1029/2006JD008288.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., Steinemann A. C. , and Lettenmaier D. P. , 2011: Drought monitoring for Washington State: Indicators and applications. J. Hydrometeor., 12, 6683.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., 2003: Attribution of regional-scale temperature changes to anthropogenic and natural causes. Geophys. Res. Lett., 30, 1728, doi:10.1029/2003GL017324.

    • Search Google Scholar
    • Export Citation
  • Verdon-Kidd, D. C., and Kiem A. S. , 2009: Nature and causes of protracted droughts in southeast Australia: Comparison between the Federation, WWII, and Big Dry droughts. Geophys. Res. Lett., 36, L22707, doi:10.1029/2009GL041067.

    • Search Google Scholar
    • Export Citation
  • Verdon-Kidd, D. C., and Kiem A. S. , 2010: Quantifying drought risk in a nonstationary climate. J. Hydrometeor., 11, 10191031.

  • Wang, G. L., 2005: Agricultural drought in a future climate: Results from 15 global climate models participating in the IPCC 4th assessment. Climate Dyn., 25, 739753.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 1738, doi:10.1007/s00382-006-0111-2.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Zwiers F. W. , Hegerl G. C. , Lambert F. H. , Gillett N. P. , Solomon S. , Stott P. A. , and Nozawa T. , 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461465.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 770 310 18
PDF Downloads 351 51 2