Generation of High-Resolution Rain Fields in West Africa: Evaluation of Dynamic Interpolation Methods

T. Vischel LTHE, Université Grenoble 1, IRD, Grenoble, France

Search for other papers by T. Vischel in
Current site
Google Scholar
PubMed
Close
,
G. Quantin LTHE, Université Grenoble 1, IRD, Grenoble, France

Search for other papers by G. Quantin in
Current site
Google Scholar
PubMed
Close
,
T. Lebel LTHE, Université Grenoble 1, IRD, Grenoble, France

Search for other papers by T. Lebel in
Current site
Google Scholar
PubMed
Close
,
J. Viarre CNES, LMTG, Toulouse, France

Search for other papers by J. Viarre in
Current site
Google Scholar
PubMed
Close
,
M. Gosset GET, IRD/UPS/CNRS, Toulouse, France

Search for other papers by M. Gosset in
Current site
Google Scholar
PubMed
Close
,
F. Cazenave LTHE, Université Grenoble 1, IRD, Grenoble, France

Search for other papers by F. Cazenave in
Current site
Google Scholar
PubMed
Close
, and
G. Panthou LTHE, Université Grenoble 1, IRD, Grenoble, France

Search for other papers by G. Panthou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High-resolution rain fields are a prerequisite to many hydrometeorological studies. For some applications, the required resolution may be as fine as 1 km in space and 5 min in time. At these scales, rainfall is strongly intermittent, variable in space, and correlated in time because of the propagation of the rainy systems. This paper compares two interpolation approaches to generate high-resolution rain fields from rain gauge measurements: (i) a classic interpolation technique that consists in interpolating independently the rain intensities at each time step (Eulerian kriging) and (ii) a simple dynamic interpolation technique that incorporates the propagation of the rainy systems (Lagrangian kriging). For this latter approach, three propagation models are tested. The different interpolation techniques are evaluated over three climatically contrasted areas in West Africa where a multiyear 5-min rainfall dataset has been collected during the African Monsoon Multidisciplinary Analyses (AMMA) campaigns. The dynamic interpolation technique is shown to perform better than the classic approach for a majority of the rainy events. The performances of the three propagation models differ from one another, depending on the evaluation criteria used. One of them provides a satisfactory time of arrival of rainfall but slightly smooths the rain intensities. The two others reproduce well the rain intensities, but the time of arrival of the rain is sometimes delayed. The choice of an appropriate propagation algorithm will thus depend on the operational objectives underlying the rain field generation.

Corresponding author address: Dr. Théo Vischel, LTHE, Université Grenoble 1, 70 Rue de la Physique, 38 400 Saint Martin d’Hères, France. E-mail: theo.vischel@ujf-grenoble.fr

Abstract

High-resolution rain fields are a prerequisite to many hydrometeorological studies. For some applications, the required resolution may be as fine as 1 km in space and 5 min in time. At these scales, rainfall is strongly intermittent, variable in space, and correlated in time because of the propagation of the rainy systems. This paper compares two interpolation approaches to generate high-resolution rain fields from rain gauge measurements: (i) a classic interpolation technique that consists in interpolating independently the rain intensities at each time step (Eulerian kriging) and (ii) a simple dynamic interpolation technique that incorporates the propagation of the rainy systems (Lagrangian kriging). For this latter approach, three propagation models are tested. The different interpolation techniques are evaluated over three climatically contrasted areas in West Africa where a multiyear 5-min rainfall dataset has been collected during the African Monsoon Multidisciplinary Analyses (AMMA) campaigns. The dynamic interpolation technique is shown to perform better than the classic approach for a majority of the rainy events. The performances of the three propagation models differ from one another, depending on the evaluation criteria used. One of them provides a satisfactory time of arrival of rainfall but slightly smooths the rain intensities. The two others reproduce well the rain intensities, but the time of arrival of the rain is sometimes delayed. The choice of an appropriate propagation algorithm will thus depend on the operational objectives underlying the rain field generation.

Corresponding author address: Dr. Théo Vischel, LTHE, Université Grenoble 1, 70 Rue de la Physique, 38 400 Saint Martin d’Hères, France. E-mail: theo.vischel@ujf-grenoble.fr
Save
  • Amani, A., and Lebel T. , 1997: Lagrangian kriging for the estimation of Sahelian rainfall at small time steps. J. Hydrol., 192, 125157.

    • Search Google Scholar
    • Export Citation
  • Bacchi, B., and Kottegoda N. , 1995: Identification and calibration of spatial correlation patterns of rainfall. J. Hydrol., 165 (1–4), 311348.

    • Search Google Scholar
    • Export Citation
  • Balme, M., Vischel T. , Lebel T. , Peugeot C. , and Galle S. , 2006: Assessing the water balance in the Sahel: Impact of small scale rainfall variability on runoff. Part 1: Rainfall variability analysis. J. Hydrol., 331, 336348.

    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2009: AMMA Land Surface Model Intercomparison Project Phase 2 (ALMIP-2). GEWEX News, Vol. 19, No. 4, International GEWEX Project Office, Silver Spring, MD, 9–10.

    • Search Google Scholar
    • Export Citation
  • Cheng, S.-J., Hsieh H.-H. , and Wang Y.-M. , 2007: Geostatistical interpolation of space–time rainfall on Tamshui River basin, Taiwan. Hydrol. Processes, 21, 31363145.

    • Search Google Scholar
    • Export Citation
  • Depraetere, C., Gosset M. , Ploix S. , and Laurent H. , 2009: The organization and kinematics of tropical rainfall systems ground tracked at mesoscale with gages: First results from the campaigns 1999-2006 on the Upper Ouémé Valley (Benin). J. Hydrol., 275, 143160.

    • Search Google Scholar
    • Export Citation
  • Desbois, M., Capderou M. , Eymard L. , Roca R. , Viltard N. , Viollier M. , and Karouche N. , 2007: Megha-Tropiques: Un satellite hydrométéorologique Franco-Indien. Meteorologie, 57, 1927.

    • Search Google Scholar
    • Export Citation
  • Gosset, M., Zahiri E. , and Moumouni S. , 2010: Rain drop size distribution variability and impact on x-band polarimetric radar retrieval: Results from the AMMA campaign in Benin. Quart. J. Roy. Meteor. Soc., 136, 243256.

    • Search Google Scholar
    • Export Citation
  • Gourley, J., and Vieux B. , 2006: A method for identifying sources of model uncertainty in rainfall-runoff simulations. J. Hydrol., 327, 6880.

    • Search Google Scholar
    • Export Citation
  • Guillot, G., and Lebel T. , 1999: Disaggregation of Sahelian mesoscale convective system rain fields: Further developments and validation. J. Geophys. Res., 104 (D24), 31 53331 551.

    • Search Google Scholar
    • Export Citation
  • Gupta, V. H., Kling H. , Yilmaz K. K. , and Martinez G. F. , 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 8091.

    • Search Google Scholar
    • Export Citation
  • Haberlandt, U., 2007: Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event. J. Hydrol., 332, 144157.

    • Search Google Scholar
    • Export Citation
  • Johnson, E., and Bras R. , 1979: Real-time estimation of velocity and covariance structure of rainfall events using telemetered raingage data—A comparison of methods. J. Hydrol., 44, 97123.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., Ciach G. J. , and Habib E. , 2003: An analysis of small-scale rainfall variability in different climatic regimes. Hydrol. Sci. J., 48, 151162.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., Villarini G. , and Smith J. A. , 2010: Radar-rainfall uncertainties: Where are we after thirty years of effort? Bull. Amer. Meteor. Soc., 91, 8794.

    • Search Google Scholar
    • Export Citation
  • Laing, A., Fritsch J. M. , and Negri A. J. , 1999: Contribution of mesoscale convective complexes to rainfall in Sahelian Africa: Estimates from geostationary infrared and passive microwave data. J. Appl. Meteor., 38, 957964.

    • Search Google Scholar
    • Export Citation
  • Lebel, T., and Bastin G. , 1985: Variogram identification by the mean-squared interpolation error method with application to hydrologic fields. J. Hydrol., 77, 3156.

    • Search Google Scholar
    • Export Citation
  • Lebel, T., and Coauthors, 2009: AMMA-CATCH studies in the Sahelian region of West-Africa: An overview. J. Hydrol., 375, 313.

  • Lebel, T., and Coauthors, 2010: The AMMA field campaigns: Multiscale and multidisciplinary observations in the West African region. Quart. J. Roy. Meteor. Soc., 136, 833.

    • Search Google Scholar
    • Export Citation
  • Mathon, V., Laurent H. , and Lebel T. , 2002: Mesoscale convective system rainfall in the Sahel. J. Appl. Meteor., 41, 10811092.

  • Michaud, J., and Sorooshian S. , 1994: Effect of rainfall-sampling errors on simulations of desert flash floods. Water Resour. Res., 30, 27652775.

    • Search Google Scholar
    • Export Citation
  • Moron, V., Robertson A. W. , Ward M. N. , and Camberlin P. , 2007: Spatial coherence of tropical rainfall at regional scale. J. Climate, 20, 52445263.

    • Search Google Scholar
    • Export Citation
  • Moszkowicz, S., 2000: Small-scale structure of rain fields—Preliminary results based on a digital gauge network and on MRL-5 legionowo radar. Phys. Chem. Earth, 25B, 933938.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models. Part I—A discussion of principles. J. Hydrol., 10, 282290.

    • Search Google Scholar
    • Export Citation
  • Pebesma, E. J., 2004. Multivariable geostatistics in S: The gstat package. Comput. Geosci., 30, 683691.

  • R Development Core Team, 2009: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 409 pp.

  • Russell, B., and Coauthors, 2010: Radar/rain-gauge comparisons on squall lines in Niamey, Niger for the AMMA. Quart. J. Roy. Meteor. Soc., 136, 289303.

    • Search Google Scholar
    • Export Citation
  • Spadavecchia, L., and Williams M. , 2009: Can spatio-temporal geostatistical methods improve high resolution regionalisation of meteorological variables? Agric. For. Meteor., 149, 11051117.

    • Search Google Scholar
    • Export Citation
  • Tao, T., Chocat B. , Liu S. , and Xin K. , 2009: Uncertainty analysis of interpolation methods in rainfall spatial-distribution—A case study of small catchment in Lyon. J. Water Resour. Prot., 2, 136144.

    • Search Google Scholar
    • Export Citation
  • Tsanis, I., Gad M. , and Donaldson N. , 2002: A comparative analysis of rain-gauge and radar techniques for storm kinematics. Adv. Water Resour., 25, 305316.

    • Search Google Scholar
    • Export Citation
  • Turk, F., Sohn B.-J. , Oh H.-J. , Ebert E. , Levizzani V. , and Smith E. , 2009: Validating a rapid-update satellite precipitation analysis across telescoping space and time scales. Meteor. Atmos. Phys., 105, 99108.

    • Search Google Scholar
    • Export Citation
  • Upton, G., 2002: A correlation-regression method for tracking rainstorms using rain-gauge data. J. Hydrol., 261, 6073.

  • Vischel, T., and Lebel T. , 2007: Assessing the water balance in the Sahel: Impact of small scale rainfall variability on runoff. Part 2: Idealized modeling of runoff sensitivity. J. Hydrol., 333, 340355.

    • Search Google Scholar
    • Export Citation
  • Vischel, T., Lebel T. , Massuel S. , and Cappelaere B. , 2009: Conditional simulation schemes of rain fields and their application to rainfall-runoff modeling studies in the Sahel. J. Hydrol., 375, 273286.

    • Search Google Scholar
    • Export Citation
  • Waymire, E., Gupta V. , and Rodriguez-Iturbe I. , 1984: A spectral theory of rainfall intensity at the meso-beta scale. Water Resour. Res., 20, 14531465.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and Brandes E. A. , 1979: Radar measurement of rainfall—A summary. Bull. Amer. Meteor. Soc., 60, 10481058.

  • Wolff, D., Fisher B. , Wang J. , Marks D. , Amitai E. , Silberstein D. , and Pipitt J. , 2005: Ground validation for the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Oceanic Technol., 22, 365380.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., 1973: Statistical properties of precipitation patterns. J. Appl. Meteor., 12, 459472.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 237 94 7
PDF Downloads 152 68 4