A New Characterization of the Land Surface Heterogeneity over Africa for Use in Land Surface Models

Armel Thibaut Kaptué Tchuenté CNRM/GAME URA 1357, Météo France, Toulouse, France

Search for other papers by Armel Thibaut Kaptué Tchuenté in
Current site
Google Scholar
PubMed
Close
,
Jean-Louis Roujean CNRM/GAME URA 1357, Météo France, Toulouse, France

Search for other papers by Jean-Louis Roujean in
Current site
Google Scholar
PubMed
Close
,
Agnès Bégué UMR TETIS, CIRAD, Montpellier, France

Search for other papers by Agnès Bégué in
Current site
Google Scholar
PubMed
Close
,
Sietse O. Los Department of Geography, Swansea University, Swansea, United Kingdom

Search for other papers by Sietse O. Los in
Current site
Google Scholar
PubMed
Close
,
Aaron A. Boone CNRM/GAME URA 1357, Météo France, Toulouse, France

Search for other papers by Aaron A. Boone in
Current site
Google Scholar
PubMed
Close
,
Jean-François Mahfouf CNRM/GAME URA 1357, Météo France, Toulouse, France

Search for other papers by Jean-François Mahfouf in
Current site
Google Scholar
PubMed
Close
,
Dominique Carrer CNRM/GAME URA 1357, Météo France, Toulouse, France

Search for other papers by Dominique Carrer in
Current site
Google Scholar
PubMed
Close
, and
Badiane Daouda Ecole Supérieure Polytechnique, UCAD, Dakar, Sénégal

Search for other papers by Badiane Daouda in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Information related to land surface is immensely important to global change science. For example, land surface changes can alter regional climate through its effects on fluxes of water, energy, and carbon. In the past decades, data sources and methodologies for characterizing land surface heterogeneity (e.g., land cover, leaf area index, fractional vegetation cover, bare soil, and vegetation albedos) from remote sensing have evolved rapidly. The double ECOCLIMAP database—constituted of a land cover map and land surface variables and derived from Advanced Very High Resolution Radiometer (AVHRR) observations acquired between April 1992 and March 1993—was developed to support investigations that require information related to spatiotemporal dynamics of land surface. Here is the description of ECOCLIMAP-II: a new characterization of the land surface heterogeneity based on the latest generation of sensors, which represents an update of the ECOCLIMAP-I database over Africa. Owing to the many features of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors (more accurate in spatial resolution and spectral information compared to the AVHRR sensor), a variety of methods have been developed for an extended period of 8 yr (2000–07) to strengthen consistency between land surface variables as required by the meteorological and ecological communities. The relative accuracy (or performance) quality of ECOCLIMAP-II was assessed (i.e., by comparison with other global datasets). Results illustrate a substantial refinement; for instance, the fractional vegetation cover resulting in a root-mean-square error of 34% instead of 64% in comparison with the original version of ECOCLIMAP.

Corresponding author address: Armel Kaptué, CNRM, 42 Av. G. Coriolis, 31057 Toulouse CEDEX 01, France. E-mail: armel.kaptue@cnrm.meteo.fr

Abstract

Information related to land surface is immensely important to global change science. For example, land surface changes can alter regional climate through its effects on fluxes of water, energy, and carbon. In the past decades, data sources and methodologies for characterizing land surface heterogeneity (e.g., land cover, leaf area index, fractional vegetation cover, bare soil, and vegetation albedos) from remote sensing have evolved rapidly. The double ECOCLIMAP database—constituted of a land cover map and land surface variables and derived from Advanced Very High Resolution Radiometer (AVHRR) observations acquired between April 1992 and March 1993—was developed to support investigations that require information related to spatiotemporal dynamics of land surface. Here is the description of ECOCLIMAP-II: a new characterization of the land surface heterogeneity based on the latest generation of sensors, which represents an update of the ECOCLIMAP-I database over Africa. Owing to the many features of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors (more accurate in spatial resolution and spectral information compared to the AVHRR sensor), a variety of methods have been developed for an extended period of 8 yr (2000–07) to strengthen consistency between land surface variables as required by the meteorological and ecological communities. The relative accuracy (or performance) quality of ECOCLIMAP-II was assessed (i.e., by comparison with other global datasets). Results illustrate a substantial refinement; for instance, the fractional vegetation cover resulting in a root-mean-square error of 34% instead of 64% in comparison with the original version of ECOCLIMAP.

Corresponding author address: Armel Kaptué, CNRM, 42 Av. G. Coriolis, 31057 Toulouse CEDEX 01, France. E-mail: armel.kaptue@cnrm.meteo.fr
Save
  • Bacour, C., Baret F. , Béal D. , Weiss M. , and Pavageau K. , 2006: Neural network estimation of LAI, fAPAR, fCover and LAIxCabb, from top of canopy MERIS reflectance data: Principles and validation. Remote Sens. Environ., 105, 313325.

    • Search Google Scholar
    • Export Citation
  • Baret, F., and Coauthors, 2007: LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm. Remote Sens. Environ., 110, 275286.

    • Search Google Scholar
    • Export Citation
  • Bonan, G., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449.

  • Camacho-de-Coca, F., Jiménez-Muñoz J. C. , Martinez B. , Bicheron P. , Lacaze R. , and Leroy M. , 2006: Prototyping of fCover product over Africa based on existing CYCLOPES and JRC products for VGT4Africa. Proc. Second Int. Symp. on Recent Advances in Quantitative Remote Sensing, Valencia, Spain, Universitat de Valencia, 722–727.

    • Search Google Scholar
    • Export Citation
  • De Colstoun, E. C. B., DeFries R. S. , and Townshend J. R. G. , 2006: Evaluation of ISLSCP Initiative II satellite-based land cover data sets and assessment of progress in land cover data for global modelling. J. Geophys. Res., 111, D22S07, doi:10.1029/2006JD007453.

    • Search Google Scholar
    • Export Citation
  • Di Gregorio, A., and Jansen L. , 2000: Land Cover Classifications System (LCCS), Classification Concepts and User Manual. Food and Agriculture Organisation, 179 pp.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of the upgraded Noah land surface model in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fang, H., Liang S. , Townshend J. , and Dickinson R. , 2008: Spatially and temporally continuous LAI data sets based on a new filtering method: Examples from North America. Remote Sens. Environ., 112, 7593.

    • Search Google Scholar
    • Export Citation
  • FAO/IIASA/ISRIC/ISSCAS/JRC, cited 2009: Harmonized World Soil Database (version 1.1). [Available online at http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/.]

    • Search Google Scholar
    • Export Citation
  • Faroux, S., Roujean J.-L. , Kaptué A. , and Masson V. , 2009: The ECOCLIMAP-II land surface database over Europe. CNRM/Météo France Tech. Note 86, 120 pp. [Available from CNRM/Météo France, 42 Av. G. Coriolis, 31057 Toulouse CEDEX 01, France.]

    • Search Google Scholar
    • Export Citation
  • Feddema, J. J., Oleson K. W. , Bonan G. , Mearns L. O. , Buja L. E. , Meehl G. A. , and Washington W. M. , 2005: The importance of land cover change in simulating future climate. Science, 310, 16741678.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., and Coauthors, 2005: Global consequences of land use. Science, 309, 570574.

  • Fritz, S., and See L. , 2008: Quantifying uncertainty and spatial disagreement in the comparison of global land cover for different applications. Global Change Biol., 14, 10571075.

    • Search Google Scholar
    • Export Citation
  • Garrigues, S., Allard D. , Baret F. , and Morisette J. , 2008a: Multivariate quantification of landscape spatial heterogeneity using variogram models. Remote Sens. Environ., 112, 216230.

    • Search Google Scholar
    • Export Citation
  • Garrigues, S., and Coauthors, 2008b: Validation and intercomparison of global leaf area index products derived from remote sensing data. J. Geophys. Res., 113, G02028, doi:10.1029/2007JG000635.

    • Search Google Scholar
    • Export Citation
  • Gómez, J. M., Valladares F. , and Puerta-Piñero C. , 2004: Differences between structural and functional environmental heterogeneity caused by seed dispersal. Funct. Ecol., 18, 787792.

    • Search Google Scholar
    • Export Citation
  • Gutman, G., 1999: On the use of long-term global data of land reflectances and vegetation indices derived from the advanced very high resolution radiometer. J. Geophys. Res., 104, 62416255.

    • Search Google Scholar
    • Export Citation
  • Gutman, G., Tarpley D. , Ignatov A. , and Olson S. , 1995: The enhanced NOAA global land dataset from the Advanced Very High Resolution Radiometer. Bull. Amer. Meteor. Soc., 76, 11411156.

    • Search Google Scholar
    • Export Citation
  • Hall, F. G., and Coauthors, 2006: The ISLSCP Initiative II global data sets: Surface boundary conditions and atmospheric forcings for land-atmosphere studies. J. Geophys. Res., 111, D22S01, doi:10.1029/2006JD007366.

    • Search Google Scholar
    • Export Citation
  • Houldcroft, C. J., Grey W. M. F. , Barnsley M. , Taylor C. M. , Los S. O. , and North P. R. J. , 2009: New vegetation albedo parameters and global fields of soil background albedo derived from MODIS for use in a climate model. J. Hydrometeor., 10, 183198.

    • Search Google Scholar
    • Export Citation
  • Imhoff, M. L., Bounoua L. , Ricketts T. , Loucks C. , Harriss R. , and Lawrence W. T. , 2004: Global patterns in human consumption of net primary production. Nature, 429, 870873.

    • Search Google Scholar
    • Export Citation
  • Jin, M., and Liang S. , 2006: An improved land surface emissivity parameter for land surface models using global remote sensing observations. J. Climate, 19, 28672881.

    • Search Google Scholar
    • Export Citation
  • Justice, C. O., Townshend J. R. G. , Vermote E. F. , Masuoka E. , Wolfe R. E. , Saleous N. , Roy D. P. , and Morisette J. T. , 2002: An overview of MODIS Land data processing and product status. Remote Sens. Environ., 83, 315.

    • Search Google Scholar
    • Export Citation
  • Kaptué, T. A. T., 2010: Mapping ecosystem and biophysical satellite parameters for the study of hydric fluxes over the African continent. Ph.D dissertation, Paul Sabatier University of Toulouse, 192 pp. [Available online at http://thesesups.ups-tlse.fr/994/.]

    • Search Google Scholar
    • Export Citation
  • Kaptué, T. A. T., De Jong S. M. , Roujean J.-L. , Favier C. , and Mering C. , 2010a: Ecosystem mapping at the African continent scale using a hybrid clustering approach based on 1-km resolution multi-annual data from SPOT/VEGETATION. Remote Sens. Environ., 115, 452464, doi:10.1016/j.rse.2010.09.015.

    • Search Google Scholar
    • Export Citation
  • Kaptué, T. A. T., Roujean J.-L. , and De Jong S. M. , 2010b: Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale. Int. J. Appl. Earth Obs. Geoinf., 13, 207219, doi:10.1016/j.jag.2010.11.005.

    • Search Google Scholar
    • Export Citation
  • Kaptué, T. A. T., Roujean J.-L. , and Faroux S. , 2010c: ECOCLIMAP-II: An ecosystem classification and land surface parameter database of western Africa at 1 km resolution for the Africa Monsoon Multidisciplinary Analysis (AMMA) project. Remote Sens. Environ., 114, 961976.

    • Search Google Scholar
    • Export Citation
  • Kolasa, J., and Rollo C. D. , 1991: Introduction: The heterogeneity of heterogeneity: A glossary. Ecological Heterogeneity, J. Kolasa and S. T. A. Pickett, Eds., Springer, 1–23.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model 1. Model structure. J. Geophys. Res., 105, 24 80924 822.

    • Search Google Scholar
    • Export Citation
  • Liu, J., and Coauthors, 2009: Validation of Moderate Resolution Imaging Spectroradiometer (MODIS) albedo retrieval algorithm: Dependence of albedo on solar zenith angle. J. Geophys. Res., 114, D01106, doi:10.1029/2008JD009969.

    • Search Google Scholar
    • Export Citation
  • Los, S. O., and Coauthors, 2000: A global 9-yr biophysical land surface dataset from NOAA AVHRR data. J. Hydrometeor., 1, 183199.

  • Lucht, W., Schaaf C. B. , and Strahler A. H. , 2000: An algorithm for the retrieval of albedo from space using semi-empirical BRDF models. IEEE Trans. Geosci. Remote Sens., 38, 977998.

    • Search Google Scholar
    • Export Citation
  • Masson, V., Champeaux J.-L. , Chauvin F. , Meriguer C. , and Lacaze R. , 2003: A global database of land surface parameters at 1-km resolution in meteorological and climate models. J. Climate, 16, 12611282.

    • Search Google Scholar
    • Export Citation
  • Miller, J., Barlage M. , Zeng X. , Wei H. , Mitchell K. and Tarpley D. , 2006: Sensitivity of the NCEP/Noah land surface model to the MODIS green vegetation fraction data set. Geophys. Res. Lett., 33, L13404, doi:10.1029/2006GL026636.

    • Search Google Scholar
    • Export Citation
  • Moody, E. G., King M. D. , Platnick S. , Schaaf C. B. , and Gao F. , 2005: Spatially complete global spectral surface albedos: Value-added datasets derived from Terra MODIS land products. IEEE Trans. Geosci. Remote Sens., 43, 144158.

    • Search Google Scholar
    • Export Citation
  • Morisette, J. T., and Coauthors, 2006: Validation of global moderate-resolution LAI products: A framework proposed within the CEOS land product validation subgroup. IEEE Trans. Geosci. Remote Sens., 44, 18041814.

    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., and Coauthors, 2002: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ., 83, 214231.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Mahfouf J.-F. , 1996: The ISBA land surface parametrisation scheme. Global Planet. Change, 13, 145159.

  • Patz, J. A., and Coauthors, 2004: Unhealthy landscapes: Policy recommendations on land use change and infectious disease emergence. Environ. Health Perspect., 112, 10921098.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., 2003: The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol., 23, 479510.

    • Search Google Scholar
    • Export Citation
  • Rechid, D., Raddatz T. J. , and Jacob D. , 2009: Parameterization of snow-free land surface albedo as a function of vegetation phenology based on MODIS data and applied in climate modelling. Theor. Appl. Climatol., 95, 245255.

    • Search Google Scholar
    • Export Citation
  • Román, M. O., and Coauthors, 2009: The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes. Remote Sens. Environ., 113, 24762498.

    • Search Google Scholar
    • Export Citation
  • Román, M. O., and Coauthors, 2010: Assessing the coupling between surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes. Remote Sens. Environ., 114, 738760.

    • Search Google Scholar
    • Export Citation
  • Roujean, J.-L., and Lacaze R. , 2002: Global mapping of vegetation parameters from POLDER multiangular measurements for studies of surface-atmosphere interactions: A pragmatic method and validation. J. Geophys. Res., 107, 4150, doi:10.1029/2001JD000751.

    • Search Google Scholar
    • Export Citation
  • Running, S. W., Loveland T. R. , Pierce L. L. , Nemani R. , and Hunt E. R. , 1995: A remote sensing based vegetation classification logic for global land-cover analysis. Remote Sens. Environ., 51, 3948.

    • Search Google Scholar
    • Export Citation
  • Salmun, H., and Molod A. , 2006: Progress in modelling the impact of land cover change on the global climate. Prog. Phys. Geogr., 30, 737749.

    • Search Google Scholar
    • Export Citation
  • Schaaf, C. B., and Coauthors, 2002: First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ., 83, 135148.

    • Search Google Scholar
    • Export Citation
  • Schaaf, C. B., Cihlar J. , Belward A. , Dutton E. , and Verstraete M. , 2009: Albedo and reflectance anisotropy, ECV-T8. GTOS Assessment of the Status of the Development of Standards for the Terrestrial Essential Climate Variables, R. Sessa, Ed., FAO, 16 pp.

    • Search Google Scholar
    • Export Citation
  • Schaaf, C. B., Liu J. , Gao F. , and Strahler A. H. , 2011: Aqua and Terra MODIS albedo and reflectance anisotropy products. Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS, B. Ramachandran, C. Justice, and M. Abrams, Eds., Remote Sensing and Digital Image Processing Series, Vol. 11, Springer-Verlag, 549–561.

    • Search Google Scholar
    • Export Citation
  • Schaepman-Strub, G., Schaepman M. E. , Painter T. H. , Dangel S. , and Martonchik J. V. , 2006: Reflectance quantities in optical remote sensing—Definitions and case studies. Remote Sens. Environ., 103, 2742.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Los S. O. , Tucker C. J. , Justice C. O. , Dazlich D. A. , Collatz G. J. , and Randall D. A. , 1996a: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Climate, 9, 706737.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996b: The ISLSCP Initiative I global datasets: Surface boundary conditions and atmospheric forcings for land–atmosphere studies. Bull. Amer. Meteor. Soc., 77, 19872005.

    • Search Google Scholar
    • Export Citation
  • Strahler, A. H., and Coauthors, 2006: Global land cover validation: Recommendations for evaluation and accuracy assessment of global land cover maps. GOFC-GOLD Rep. 25, 51 pp.

    • Search Google Scholar
    • Export Citation
  • Strugnell, N., and Lucht W. , 2001: An algorithm to infer continental-scale albedo from AVHRR data, land cover class, and field observations of typical BRDFs. J. Climate, 14, 13601376.

    • Search Google Scholar
    • Export Citation
  • Sutherland, W. J., and Coauthors, 2009: One hundred questions of importance to the conservation of importance to the conservation of global biological diversity. Conserv. Biol., 23, 557567.

    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., and Coauthors, 2010: The satellite application facility on land surface analysis. Int. J. Remote Sens., 32, 27252744, doi:10.1080/01431161003743199.

    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., 1979: Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ., 8, 127150.

  • Tucker, C. J., Townshend J. R. G. , and Goff T. E. , 1985: African land-cover classification using satellite data. Science, 227, 369374.

    • Search Google Scholar
    • Export Citation
  • Turner, W. R., Katrina B. , Brooks T. M. , Costanza R. , Da Fonseca G. A. B. , and Portela R. , 2007: Global conservation of biodiversity and ecosystem services. Bioscience, 57, 868873.

    • Search Google Scholar
    • Export Citation
  • Williams, C. W., Hanan N. P. , Neff J. C. , Scoles R. J. , Berry J. A. , Denning A. S. , and Baker D. F. , 2007: Africa and the global carbon cycle. Carbon Balance Manage., 2, 113.

    • Search Google Scholar
    • Export Citation
  • Wilson, M. F., and Henderson-Sellers A. , 1985: A global archive of land cover and soils data for use in general circulation models. J. Climatol., 5, 119143.

    • Search Google Scholar
    • Export Citation
  • Yang, W., Shabanov N. V. , Huang D. , Wang W. , Dickinson R. E. , Nemani R. R. , Knyazikhin Y. , and Myneni R. B. , 2006: Analysis of leaf area index products from combination of MODIS Terra and Aqua data. Remote Sens. Environ., 104, 297312.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 229 80 5
PDF Downloads 114 36 1