Kalman Filter–Based CMORPH

Robert J. Joyce NOAA/Climate Prediction Center, Camp Springs, Maryland, and Wyle, Inc., McLean, Virginia

Search for other papers by Robert J. Joyce in
Current site
Google Scholar
PubMed
Close
and
Pingping Xie NOAA/Climate Prediction Center, Camp Springs, Maryland

Search for other papers by Pingping Xie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A Kalman filter (KF)-based Climate Prediction Center (CPC) morphing technique (CMORPH) algorithm is developed to integrate the passive microwave (PMW) precipitation estimates from low-Earth-orbit (LEO) satellites and infrared (IR) observations from geostationary (GEO) platforms. With the new algorithm, the precipitation analysis at a grid box of 8 × 8 km2 is defined in three steps. First, PMW estimates of instantaneous rain rates closest to the target analysis time in both the forward and backward directions are propagated from their observation times to the analysis time using the cloud system advection vectors (CSAVs) computed from the GEO–IR images. The “prediction” of the precipitation analysis is then defined by averaging the forward- and backward-propagated PMW estimates with weights inversely proportional to their error variance. The IR-based precipitation estimates are incorporated if the gap between the two PMW observations is longer than 90 min. Validation tests showed substantial improvements of the KF-based CMORPH against the original version in both the pattern correlation and fidelity of probability density function (PDF) of the precipitation intensity. In general, performance of the original CMORPH degrades sharply with poor pattern correlation and substantially elevated (damped) frequency for light (heavy) precipitation events when PMW precipitation estimates are available from fewer LEO satellites. The KF-based CMORPH is capable of producing high-resolution precipitation analysis with much more stable performance with various levels of availability for the PMW observations.

Corresponding author address: Dr. Pingping Xie, NOAA/Climate Prediction Center, 5200 Auth Road, Suite 605, Camp Springs, MD 20746. E-mail: Pingping.Xie@noaa.gov

Abstract

A Kalman filter (KF)-based Climate Prediction Center (CPC) morphing technique (CMORPH) algorithm is developed to integrate the passive microwave (PMW) precipitation estimates from low-Earth-orbit (LEO) satellites and infrared (IR) observations from geostationary (GEO) platforms. With the new algorithm, the precipitation analysis at a grid box of 8 × 8 km2 is defined in three steps. First, PMW estimates of instantaneous rain rates closest to the target analysis time in both the forward and backward directions are propagated from their observation times to the analysis time using the cloud system advection vectors (CSAVs) computed from the GEO–IR images. The “prediction” of the precipitation analysis is then defined by averaging the forward- and backward-propagated PMW estimates with weights inversely proportional to their error variance. The IR-based precipitation estimates are incorporated if the gap between the two PMW observations is longer than 90 min. Validation tests showed substantial improvements of the KF-based CMORPH against the original version in both the pattern correlation and fidelity of probability density function (PDF) of the precipitation intensity. In general, performance of the original CMORPH degrades sharply with poor pattern correlation and substantially elevated (damped) frequency for light (heavy) precipitation events when PMW precipitation estimates are available from fewer LEO satellites. The KF-based CMORPH is capable of producing high-resolution precipitation analysis with much more stable performance with various levels of availability for the PMW observations.

Corresponding author address: Dr. Pingping Xie, NOAA/Climate Prediction Center, 5200 Auth Road, Suite 605, Camp Springs, MD 20746. E-mail: Pingping.Xie@noaa.gov
Save
  • Adler, R. F., Huffman G. J. , and Keehn P. R. , 1994: Global tropical rain estimates from microwave-adjusted geosynchronous IR data. Remote Sens. Rev., 11, 125152.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Imam B. , Hsu K. , Sorooshian S. , Bellerby T. J. , and Huffman G. J. , 2010: REFAME: Rain estimation using forward-adjusted advection of microwave estimates. J. Hydrometeor., 11, 13051321.

    • Search Google Scholar
    • Export Citation
  • Dai, A., Trenberth K. E. , and Karl T. R. , 1999: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 24512473.

    • Search Google Scholar
    • Export Citation
  • Dai, A., Lin X. , and Hsu K. , 2007: The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Climate Dyn., 29, 727744.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Janowiak J. E. , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., 1997: Special sensor microwave imager derived global rainfall estimates for climatological applications. J. Geophys. Res., 102, 16 71516 735.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., Weng F. , Grody N. C. , and Zhao L. , 2000: Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophys. Res. Lett., 27, 26692672.

    • Search Google Scholar
    • Export Citation
  • Gandin, L. S., 1965: Objective Analysis of Meteorological Fields. Israel Program for Scientific Translations, 242 pp.

  • Hong, Y., Adler R. F. , Negri A. J. , and Huffman G. J. , 2007: Flood and landslide applications of near real-time satellite rainfall products. Nat. Hazards, 43, 285294, doi:10.1007/s11069-006-9106-x.

    • Search Google Scholar
    • Export Citation
  • Hsu, K.-L., Gao X. , Sorooshian S. , and Gupta H. V. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Stoker E. F. , Bolvin D. T. , and Nelkin E. J. , 2003: Analysis of TRMM 3-hourly multi-satellite precipitation estimates computed in both real and post-real time. Extended Abstracts, 12th Conf. on Satellite Meteorology and Oceanography, Seattle, WA, Amer. Meteor. Soc., P4.11. [Available online at http://ams.confex.com/ams/annual2003/techprogram/paper_54906.htm.]

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , and Nelkin E. J. , 2009: The TRMM Multi-satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 3–22.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., Joyce R. J. , and Yarosh Y. , 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205217.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 364 pp.

  • Klazura, G. E., and Imy D. A. , 1993: A description of the initial set of analysis products available from the NEXRAD WSR-88D system. Bull. Amer. Meteor. Soc., 74, 12931312.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Olson W. S. , and Giglio L. , 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean-Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 16914 240.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., Kummerow C. D. , Hong Y. , and Tao W.-K. , 1999: Atmospheric latent heating distributions in the tropics derived from satellite passive microwave radiometer measurements. J. Appl. Meteor., 38, 633664.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., and Dills P. N. , 1994: Cloud motion and height measurements from multiple satellites including cloud heights and motions in polar regions. Preprints, Seventh Conf. on Satellite Meteorology and Oceanography, Monterey, CA, Amer. Meteor. Soc., 408–411.

    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., Smith T. M. , and Arkin P. A. , 2008: A new merged analysis of precipitation utilizing satellite and reanalysis data. J. Geophys. Res., 113, D22103, doi:10.1029/2008JD010310.

    • Search Google Scholar
    • Export Citation
  • Shen, Y., Xiong A. , Wang Y. , and Xie P. , 2009: Performance of high-resolution satellite precipitation products over China. J. Geophys. Res., 115, D02114, doi:10.1029/2009JD012097.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., Adler R. F. , and North G. R. , 1988: A proposed tropical rainfall measuring mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278295.

    • Search Google Scholar
    • Export Citation
  • Smith, E., and Phillips D. , 1972: Measurements from satellite platforms. SSEC Annual Satellite Rep. NASS-11542, 53 pp.

  • Tian, Y., Peters-Lidard C. D. , Choudhury B. J. , and Garcia M. , 2007: Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. J. Hydrometeor., 8, 11651183.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Ebert E. E. , Sohn B.-J. , Oh H.-J. , Levizzani V. , Smith E. A. , and Ferraro R. , 2003: Validation of an operational global precipitation analysis at short time scales. Extended Abstracts, 12th Conf. on Satellite Meteorology and Oceanography, Seattle, WA, Amer. Meteor. Soc., JP1.2. [Available online at http://ams.confex.com/ams/annual2003/techprogram/paper_56865.htm.]

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Mostovoy G. V. , and Anantharaj V. G. , 2010: Soil moisture sensitivity to NRL-blend high-resolution precipitation products: Analysis of simulations with two land surface models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 3, 3248.

    • Search Google Scholar
    • Export Citation
  • Ushio, T., and Coauthors, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87, 137151.

    • Search Google Scholar
    • Export Citation
  • Vila, D., Ferraro R. , and Joyce R. , 2007: Evaluation and improvement of AMSU precipitation retrievals. J. Geophys. Res., 112, D20119, doi:10.1029/2007JD008617.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1995: An intercomparison of gauge observations and satellite estimates of monthly precipitation. J. Appl. Meteor., 34, 11431160.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840858.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Xie, P., Yatagai A. , Chen M. , Hayasaka T. , Fukushima Y. , Liu C. , and Yang S. , 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626.

    • Search Google Scholar
    • Export Citation
  • Xie, P., Chen M. , and Shi W. , 2010: CPC unified gauge-based analysis of global daily precipitation. Preprints, 24th Conf. on Hydrology, Atlanta, GA, Amer. Meteor. Soc., 2.3A. [Available online at http://ams.confex.com/ams/90annual/techprogram/paper_163676.htm.]

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2009: National Mosaic and QPE (NMQ) system—Description, results and future plans. Preprints, 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 7A.1. [Available online at http://ams.confex.com/ams/34Radar/techprogram/paper_155375.htm.]

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2293 923 131
PDF Downloads 1151 347 32