WATCH: Current Knowledge of the Terrestrial Global Water Cycle

Richard Harding * Centre for Ecology and Hydrology, Wallingford, United Kingdom

Search for other papers by Richard Harding in
Current site
Google Scholar
PubMed
Close
,
Martin Best Met Office Hadley Centre, Wallingford, United Kingdom

Search for other papers by Martin Best in
Current site
Google Scholar
PubMed
Close
,
Eleanor Blyth * Centre for Ecology and Hydrology, Wallingford, United Kingdom

Search for other papers by Eleanor Blyth in
Current site
Google Scholar
PubMed
Close
,
Stefan Hagemann Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Stefan Hagemann in
Current site
Google Scholar
PubMed
Close
,
Pavel Kabat Earth System Science and Climate Change Group, Wageningen University, Netherlands

Search for other papers by Pavel Kabat in
Current site
Google Scholar
PubMed
Close
,
Lena M. Tallaksen Department of Geosciences, University of Oslo, Norway

Search for other papers by Lena M. Tallaksen in
Current site
Google Scholar
PubMed
Close
,
Tanya Warnaars * Centre for Ecology and Hydrology, Wallingford, United Kingdom

Search for other papers by Tanya Warnaars in
Current site
Google Scholar
PubMed
Close
,
David Wiberg ** International Institute for Applied Systems Analysis, Laxenburg, Austria

Search for other papers by David Wiberg in
Current site
Google Scholar
PubMed
Close
,
Graham P. Weedon Met Office Hadley Centre, Wallingford, United Kingdom

Search for other papers by Graham P. Weedon in
Current site
Google Scholar
PubMed
Close
,
Henny van Lanen Hydrology and Quantitative Water Management Group, Centre for Water and Climate, Wageningen University, Netherlands

Search for other papers by Henny van Lanen in
Current site
Google Scholar
PubMed
Close
,
Fulco Ludwig Earth System Science and Climate Change Group, Wageningen University, Netherlands

Search for other papers by Fulco Ludwig in
Current site
Google Scholar
PubMed
Close
, and
Ingjerd Haddeland Earth System Science and Climate Change Group, Wageningen University, Netherlands
Norwegian Water Resources and Energy Directorate, Oslo, Norway

Search for other papers by Ingjerd Haddeland in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Water-related impacts are among the most important consequences of increasing greenhouse gas concentrations. Changes in the global water cycle will also impact the carbon and nutrient cycles and vegetation patterns. There is already some evidence of increasing severity of floods and droughts and increasing water scarcity linked to increasing greenhouse gases. So far, however, the most important impacts on water resources are the direct interventions by humans, such as dams, water extractions, and river channel modifications. The Water and Global Change (WATCH) project is a major international initiative to bring together climate and water scientists to better understand the current and future water cycle. This paper summarizes the underlying motivation for the WATCH project and the major results from a series of papers published or soon to be published in the Journal of Hydrometeorology WATCH special collection. At its core is the Water Model Intercomparison Project (WaterMIP), which brings together a wide range of global hydrological and land surface models run with consistent driving data. It is clear that we still have considerable uncertainties in the future climate drivers and in how the river systems will respond to these changes. There is a grand challenge to the hydrological and climate communities to both reduce these uncertainties and communicate them to a wider society.

Corresponding author address: Dr. Richard Harding, Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, United Kingdom. E-mail: rjh@ceh.ac.uk

This article is included in the Water and Global Change (WATCH) special collection.

Abstract

Water-related impacts are among the most important consequences of increasing greenhouse gas concentrations. Changes in the global water cycle will also impact the carbon and nutrient cycles and vegetation patterns. There is already some evidence of increasing severity of floods and droughts and increasing water scarcity linked to increasing greenhouse gases. So far, however, the most important impacts on water resources are the direct interventions by humans, such as dams, water extractions, and river channel modifications. The Water and Global Change (WATCH) project is a major international initiative to bring together climate and water scientists to better understand the current and future water cycle. This paper summarizes the underlying motivation for the WATCH project and the major results from a series of papers published or soon to be published in the Journal of Hydrometeorology WATCH special collection. At its core is the Water Model Intercomparison Project (WaterMIP), which brings together a wide range of global hydrological and land surface models run with consistent driving data. It is clear that we still have considerable uncertainties in the future climate drivers and in how the river systems will respond to these changes. There is a grand challenge to the hydrological and climate communities to both reduce these uncertainties and communicate them to a wider society.

Corresponding author address: Dr. Richard Harding, Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, United Kingdom. E-mail: rjh@ceh.ac.uk

This article is included in the Water and Global Change (WATCH) special collection.

Save
  • Abbott, M. B., Bathurst J. C. , Cunge J. A. , O’Connell P. E. , and Rasmussen J. , 1986: An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system. J. Hydrol., 87, 4559.

    • Search Google Scholar
    • Export Citation
  • Alcamo, J., Döll P. , Heinrichs T. , Kaspar F. , Lehner B. , Rösch T. , and Siebert S. , 2003: Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J., 48, 317333.

    • Search Google Scholar
    • Export Citation
  • Alcamo, J., Florke M. , and Marker M. , 2007: Future long-term changes in global water resources driven by socioeconomic and climatic change. Hydrol. Sci. J., 52, 247275.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and Ingram W. J. , 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232.

  • Arnell, N. W., 1999: A simple water balance model for the simulation of streamflow over a large geographic domain. J. Hydrol., 217, 314335.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., Adam J. C. , and Lettenmaier D. P. , 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309.

    • Search Google Scholar
    • Export Citation
  • Bates, B. C., Kundzewicz Z. W. , Wu S. , and Palutikof J. P. , Eds., 2008: Climate change and water. IPCC Tech. Paper 6, 210 pp.

  • Beven, K. J., 2001: Rainfall-Runoff Modeling: The Primer. John Wiley, 372 pp.

  • Beven, K. J., 2002: Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system. Hydrol. Processes, 16, 189206.

    • Search Google Scholar
    • Export Citation
  • Biemans, H., Hutjes R. W. A. , Kabat P. , Strengers B. J. , Gerten D. , and Rost S. , 2009: Effects of precipitation uncertainty on discharge calculations for main river basins. J. Hydrometeor., 10, 10111025.

    • Search Google Scholar
    • Export Citation
  • Blyth, E. M., 2001: Relative influence of vertical and horizontal processes in large-scale water and energy balance modelling. Soil–Vegetation–Atmosphere Transfer Schemes and Large-Scale Hydrological Models, IAHS Press, Vol. 270, 3–10.

    • Search Google Scholar
    • Export Citation
  • Boberg, F., Berg P. , Thejll P. , Gutowski W. J. , and Christensen J. H. , 2009: Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble. Climate Dyn., 32, 10971106, doi:10.1007/s00382-008-0446-y.

    • Search Google Scholar
    • Export Citation
  • Boxall, A. B. A., and Coauthors, 2009: Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environ. Health Perspect., 117, 508514.

    • Search Google Scholar
    • Export Citation
  • Burke, E. J., Brown S. J. , and Christidis N. , 2006: Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J. Hydrometeor., 7, 11131125.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1991: Interpretation of snow-climate feedback as produced by 17 general circulation models. Science, 253, 888892, doi:10.1126/science.253.5022.888.

    • Search Google Scholar
    • Export Citation
  • Claussen, M., 2004: The global climate. Vegetation, Water, Humans and the Climate, P. Kabat et al., Eds., Global Change—The IGBP Series, Vol. 24, Springer, 33–57.

    • Search Google Scholar
    • Export Citation
  • Corzo Perez, G. A., van Huijgevoort M. H. J. , Voß F. , and van Lanen H. A. J. , 2011: On the spatio-temporal analysis of hydrological droughts from global hydrological models. Hydrol. Earth Syst. Sci. Discuss., 8, 619652, doi:10.5194/hessd-8-619-2011.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2010: Drought under global warming: A review. Wiley Interdiscip. Rev. Climate Change, 2, 4565, doi:10.1002/wcc.81.

  • Dai, A., Trenberth K. E. , and Qian T. , 2004: A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5, 11171130.

    • Search Google Scholar
    • Export Citation
  • Döll, P., and Siebert S. , 2000: Global modeling of irrigation water requirements. Water Resour. Res., 38, 1037, doi:10.1029/2001WR000355.

    • Search Google Scholar
    • Export Citation
  • Döll, P., and Flörke M. , 2005: Global-scale estimation of diffuse groundwater recharge. Frankfurt Hydrology Paper 03, 21 pp.

  • Döll, P., Fiedler K. , and Zhang J. , 2009: Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci., 13, 24132432.

    • Search Google Scholar
    • Export Citation
  • Falloon, P., and Betts R. A. , 2010: Climate impacts on European agriculture and water management in the context of adaptation and mitigation—The importance of an integrated approach. Sci. Total Environ., 408, 56675687.

    • Search Google Scholar
    • Export Citation
  • Falloon, P., Betts R. A. , Wiltshire A. , Dankers R. , Mathison C. , and McNeall D. , 2011: Validation of river flows in HadGEM1 and HadCM3 with the TRIP river flow model. J. Hydrometeor., in press.

    • Search Google Scholar
    • Export Citation
  • Fischer, G., Tubiello F. N. , van Velthuizen H. , and Wiberg D. A. , 2007: Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecasting Soc. Change, 74, 10831107.

    • Search Google Scholar
    • Export Citation
  • Fuchs, T., Schneider U. , and Rudolf B. , 2007: Global precipitation analysis products of the GPCC. Deutscher Wetterdienst GPCC Rep., 12 pp.

    • Search Google Scholar
    • Export Citation
  • Gedney, N., Cox P. M. , Betts R. A. , Boucher O. , Huntingford C. , and Stott P. A. , 2006: Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 439, 835838.

    • Search Google Scholar
    • Export Citation
  • Gerten, D., and Gedney N. , 2008: Report on uncertainty in water budgets of the 20th century due to the representation of the impact of CO2 enrichment. WATCH Tech. Rep. 3, 7 pp. [Available online at http://www.eu-watch.org/publications/technical-reports.]

    • Search Google Scholar
    • Export Citation
  • Gerten, D., Heinke J. , Hoff H. , Biemans H. , Fader M. , and Waha K. , 2011: Global water availability and requirements for future food production. J. Hydrometeor., 12, 885899.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., Knight R. W. , Easterling D. R. , Karl T. R. , Hegerl G. C. , and Razuvaev V. N. , 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., and Coauthors, 2011: Multimodel estimate of the global water balance: Setup and first results. J. Hydrometeor., 12, 869884.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., Chen C. , Härter J. O. , Heinke J. , Gerten D. , and Piani C. , 2011: Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J. Hydrometeor., 12, 556578.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and Soden B. J. , 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 8395.

  • Jakeman, A., and Hornberger G. M. , 1993: How much complexity is warranted in a rainfall-runoff model? Water Resour. Res., 29, 26372649.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954.

    • Search Google Scholar
    • Export Citation
  • Klein Tank, A. M. G., and Konnen G. P. , 2003: Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J. Climate, 16, 36653680.

    • Search Google Scholar
    • Export Citation
  • Leander, R., and Buishand T. A. , 2007: Resampling of regional climate model output for the simulation of extreme river flows. J. Hydrol., 332, 487496.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99 (D7), 14 41514 428.

    • Search Google Scholar
    • Export Citation
  • Lucas-Picher, P., and Coauthors, 2011: Can regional climate models represent the Indian monsoon? J. Hydrometeor., 12, 849868.

  • Ludwig, F., and Moench M. , 2009: The impacts of climate change on water. Climate Change Adaptation in the Water Sector, F. Ludwig et al., Eds., Earthscan, 35–50.

    • Search Google Scholar
    • Export Citation
  • McGuire, V. L., 2009: Water-level changes in the High Plains aquifer, predevelopment to 2007, 2005–06, and 2006–07. U.S. Geological Survey Scientific Investigations Rep. 2009-5019, 9 pp. [Available online at http://pubs.usgs.gov/sir/2009/5019/.]

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and Jones P. D. , 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712.

    • Search Google Scholar
    • Export Citation
  • Moore, R. J., 2007: The PDM rainfall-runoff model. Hydrol. Earth Syst. Sci., 11, 483499.

  • Pall, P., Aina T. , Stone D. A. , Stott P. A. , Nozawa T. , Hilberts A. G. J. , Lohmann D. , and Allen M. R. , 2011: Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2011. Nature, 470, 382383.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., Doblas-Reyes F. J. , Weisheimer A. , and Rodwell M. J. , 2008: Toward seamless prediction: Calibration of climate change projections using seasonal forecasts. Bull. Amer. Meteor. Soc., 89, 459470.

    • Search Google Scholar
    • Export Citation
  • Peterson, B. J., Holmes R. M. , McClelland J. W. , Vörösmarty C. J. , Lammers R. B. , Shiklomanov A. I. , Shiklomanov I. A. , and Rahmstorf S. , 2002: Increasing river discharge to the Arctic Ocean. Science, 298, 21712173.

    • Search Google Scholar
    • Export Citation
  • Piani, C., Haerter J. O. , and Coppola E. , 2010: Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol., 99, 187192, doi:10.1007/S00704-009-0134-9.

    • Search Google Scholar
    • Export Citation
  • Prudhomme, C., Parry S. , Hannaford J. , Clark D. B. , Hagemann S. , and Voss F. , 2011: How well do large-scale models reproduce regional hydrological extremes in Europe? J. Hydrometeor., 12, 11811204.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., Velicogna I. , and Famiglietti J. S. , 2009: Satellite-based estimates of groundwater depletion in India. Nature, 460, 9991002.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., and Farquhar G. D. , 2002: The cause of decreased pan evaporation over the past 50 years. Science, 298, 14101411.

  • Roderick, M. L., Rotstayne L. D. , Farquahar G. D. , and Hobbins M. T. , 2007: On the attribution of changing pan evaporation. Geophys. Res. Lett., 34, L17403, doi:10.1029/2007GL031166.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111.

    • Search Google Scholar
    • Export Citation
  • Stahl, K., and Coauthors, 2010: Streamflow trends in Europe: Evidence from a dataset of near-natural catchments. Hydrol. Earth Syst. Sci., 14, 23672382, doi:10.5194/hess-14-2367-2010.

    • Search Google Scholar
    • Export Citation
  • Stahl, K., Tallaksen L. M. , Gudmundsson L. , and Christensen J. H. , 2011: Streamflow data from small basins: A challenging test to high-resolution regional climate modeling. J. Hydrometeor., 12, 900912.

    • Search Google Scholar
    • Export Citation
  • Strzepek, K., and Boehlert B. , 2010: Competition for water for the food system. Philos. Trans. Roy. Soc. London, B365, 29272940.

  • Trenberth, K. E., Smith L. , Qian T. , Dai A. , and Fasullo J. , 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769.

    • Search Google Scholar
    • Export Citation
  • Van Vliet, M. T. H., and Zwolsman J. J. G. , 2008: Impact of summer droughts on the water quality of the Meuse River. J. Hydrol., 353, 117.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., Green P. , Salisbury J. , and Lammers R. B. , 2000: Global water resources: Vulnerability from climate change and population growth. Science, 289, 284288.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., and Coauthors, 2010: Global threats to human water security and river biodiversity. Nature, 467, 555561.

  • Ward, P. J., Strzepek K. M. , Pieter Pauw W. , Luke M. , Brander W. M. , Hughes G. A. , and Aerts J. C. J. H. , 2010: Partial costs of global climate change adaptation for the supply of raw industrial and municipal water: A methodology and application. Environ. Res. Lett., 5, 044011, doi:10.1088/1748-9326/5/4/044011.

    • Search Google Scholar
    • Export Citation
  • Weedon, G. P., and Coauthors, 2011: Creation of the WATCH Forcing Data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeor., 12, 823848.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., Ricciardulli L. , Hilburn K. , and Mears C. , 2007: How much more rain will global warming bring? Science, 317, 233235, doi:10.1126/science.1140746.

    • Search Google Scholar
    • Export Citation
  • Wild, M., and Coauthors, 2005: From dimming to brightening: Decadal changes in solar radiation at Earth’s surface. Science, 308, 847850, doi:10.1126/science.1103215.

    • Search Google Scholar
    • Export Citation
  • Wong, W. K., Beldring S. , Engen-Skaugem T. , Haddeland I. , and Hisdal H. , 2011: Climate change effects on spatiotemporal patterns of hydroclimatological summer droughts in Norway. J. Hydrometeor., 12, 12051220.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Zwiers F. W. , Hegerl G. C. , Lambert F. H. , Gillett N. P. , Solomon S. , Stott P. A. , and Nozawa T. , 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461465.

    • Search Google Scholar
    • Export Citation
  • Zolina, O., Simmer C. , Gulev S. K. , and Kollet S. , 2010: Changing structure of European precipitation: Longer wet periods leading to more abundant rainfalls. Geophys. Res. Lett., 37, L06704, doi:10.1029/2010GL042468.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1633 888 55
PDF Downloads 595 210 26