Evaluation of High-Resolution Satellite Rainfall Products through Streamflow Simulation in a Hydrological Modeling of a Small Mountainous Watershed in Ethiopia

Menberu M. Bitew Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Menberu M. Bitew in
Current site
Google Scholar
PubMed
Close
,
Mekonnen Gebremichael Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Mekonnen Gebremichael in
Current site
Google Scholar
PubMed
Close
,
Lula T. Ghebremichael Rubenstein School of Environmental Resources, University of Vermont, Burlington, Vermont

Search for other papers by Lula T. Ghebremichael in
Current site
Google Scholar
PubMed
Close
, and
Yared A. Bayissa Department of Civil Engineering, Addis Ababa University, Addis Ababa, Ethiopia

Search for other papers by Yared A. Bayissa in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study focuses on evaluating four widely used global high-resolution satellite rainfall products [the Climate Prediction Center’s morphing technique (CMORPH) product, the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) near-real-time product (3B42RT), the TMPA method post-real-time research version product (3B42), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) product] with a spatial resolution of 0.25° and temporal resolution of 3 h through their streamflow simulations in the Soil and Water Assessment Tool (SWAT) hydrologic model of a 299-km2 mountainous watershed in Ethiopia. Results show significant biases in the satellite rainfall estimates. The 3B42RT and CMORPH products perform better than the 3B42 and PERSIANN. The predictive ability of each of the satellite rainfall was examined using a SWAT model calibrated in two different approaches: with rain gauge rainfall as input, and with each of the satellite rainfall products as input. Significant improvements in model streamflow simulations are obtained when the model is calibrated with input-specific rainfall data than with rain gauge data. Calibrating SWAT with satellite rainfall estimates results in curve number values that are by far higher than the standard tabulated values, and therefore caution must be exercised when using standard tabulated parameter values with satellite rainfall inputs. The study also reveals that bias correction of satellite rainfall estimates significantly improves the model simulations. The best-performing model simulations based on satellite rainfall inputs are obtained after bias correction and model recalibration.

Corresponding author address: Dr. Mekonnen Gebremichael, Civil and Environmental Engineering Department, University of Connecticut, 261 Glenbrook Road, Unit 2037, Storrs, CT 06269-2037. E-mail: mekonnen@engr.uconn.edu

Abstract

This study focuses on evaluating four widely used global high-resolution satellite rainfall products [the Climate Prediction Center’s morphing technique (CMORPH) product, the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) near-real-time product (3B42RT), the TMPA method post-real-time research version product (3B42), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) product] with a spatial resolution of 0.25° and temporal resolution of 3 h through their streamflow simulations in the Soil and Water Assessment Tool (SWAT) hydrologic model of a 299-km2 mountainous watershed in Ethiopia. Results show significant biases in the satellite rainfall estimates. The 3B42RT and CMORPH products perform better than the 3B42 and PERSIANN. The predictive ability of each of the satellite rainfall was examined using a SWAT model calibrated in two different approaches: with rain gauge rainfall as input, and with each of the satellite rainfall products as input. Significant improvements in model streamflow simulations are obtained when the model is calibrated with input-specific rainfall data than with rain gauge data. Calibrating SWAT with satellite rainfall estimates results in curve number values that are by far higher than the standard tabulated values, and therefore caution must be exercised when using standard tabulated parameter values with satellite rainfall inputs. The study also reveals that bias correction of satellite rainfall estimates significantly improves the model simulations. The best-performing model simulations based on satellite rainfall inputs are obtained after bias correction and model recalibration.

Corresponding author address: Dr. Mekonnen Gebremichael, Civil and Environmental Engineering Department, University of Connecticut, 261 Glenbrook Road, Unit 2037, Storrs, CT 06269-2037. E-mail: mekonnen@engr.uconn.edu
Save
  • Arnold, J. G., Srinivasan R. , Muttiah R. S. , and Allen P. M. , 1998: Large area hydrologic modeling and asssessment: Part I. Model development. J. Amer. Water Resour. Assoc., 34, 7389, doi:10.1111/j.1752-1688.1998.tb05961.x.

    • Search Google Scholar
    • Export Citation
  • Artan, G., Verdin J. , and Asante K. , 2001: A wide-area flood risk monitoring model. Proc. Fifth Int. Workshop on Application of Remote Sensing in Hydrology, Montpellier, France, Laboratoire Commun de Télédétection, U.S. Department of Agriculture Hydrology Laboratory, and Environment Canada.

    • Search Google Scholar
    • Export Citation
  • Artan, G., Gadain H. , Smith J. L. , Asante K. , Bandaragoda C. J. , and Verdin J. P. , 2007: Adequacy of satellite-derived rainfall data for streamflow modeling. Nat. Hazards, 43, 167185, doi:10.1007/s11069-007-9121-6.

    • Search Google Scholar
    • Export Citation
  • Bitew, M. M., and Gebremichael M. , 2010: Evaluation through independent measurements: Complex terrain and humid tropical region in Ethiopia. Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer-Verlag, 205–214.

    • Search Google Scholar
    • Export Citation
  • Burnash, R. J. C., 1995: The NWS river forecast system—Catchment modeling. Computer Models of Watershed Hydrology, V. P. Singh, Ed., Water Resources Publications, 311–366.

    • Search Google Scholar
    • Export Citation
  • Duan, Q. Y., Sorooshian S. , and Gupta V. , 1992: Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res., 28, 10151031, doi:10.1029/91WR02985.

    • Search Google Scholar
    • Export Citation
  • Easton, Z. M., and Coauthors, 2010: A multi basin SWAT model analysis of runoff and sedimentation in the Blue Nile, Ethiopia. Hydrol. Earth Syst. Sci., 14, 18271841.

    • Search Google Scholar
    • Export Citation
  • Eckhardt, K., and Arnold J. G. , 2001: Automatic calibration of a distributed catchment model. J. Hydrol., 251 (1–2), 103109, doi:10.1016/S0022-1694(01)00429-2.

    • Search Google Scholar
    • Export Citation
  • Gassman, P. W., Reyes M. R. , Green C. H. , and Arnold J. G. , 2007: The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE, 50, 12111250.

    • Search Google Scholar
    • Export Citation
  • Harris, A., Rahman S. , Hossain F. , Yarborough L. , Bagtzoglou A. C. , and Easton G. , 2007: Satellite-based flood modeling using TRMM-based rainfall products. Sensors, 7, 34163427.

    • Search Google Scholar
    • Export Citation
  • Hirpa, F. A., Gebremichael M. , and Hopson T. , 2010: Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J. Appl. Meteor. Climatol., 49, 10441051.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Gochis D. , Cheng J. T. , Hsu K. L. , and Sorooshian S. , 2007: Evaluation of PERSIANN-CCS rainfall measurement using the NAME Event Rain Gauge Network. J. Hydrometeor., 8, 469482.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., Gao X. , Sorooshian S. , and Gupta H. V. , 1997: Precipitation estimation from remotely sensed information using artificial networks. J. Appl. Meteor., 36, 11761190.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., and , Droogers O. , 2008: Calibration of a distributed hydrological model based on satellite evapotranspiration. J. Hydrol., 349 (3–4), 411424, doi:10.1016/j.jhydrol.2007.11.017.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimation from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and McCabe G. J. , 1999: Evaluating the use of “goodness of fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35, 233241.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , Wood E. F. , and Lettenmaier D. P. , 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global Planet. Change, 13, 195206, doi:10.1016/0921-8181(95)00046-1.

    • Search Google Scholar
    • Export Citation
  • McCabe, M. F., Wood E. F. , Wojcik R. , Pan M. , Sheffield J. , Gao H. , and Su H. , 2008: Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies. Remote Sens. Environ., 112, 430444.

    • Search Google Scholar
    • Export Citation
  • Ndomba, K., Mtalo F. , and Killingtveit A. , 2008: SWAT model application in a data scarce tropical complex catchment in Tanzania. Phys. Chem. Earth, 33, 626632, doi:10.1016/j.pce.2008.06.013.

    • Search Google Scholar
    • Export Citation
  • Pan, M., Wood E. F. , Wojcik R. , and McCabe M. F. , 2008: Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sens. Environ., 112, 12821294.

    • Search Google Scholar
    • Export Citation
  • SCS, 1986: Urban hydrology for small watersheds. Natural Resources Conservation Service Tech. Release 210-VI-TR-55, 164 pp.

  • Sorooshian, S., Hsu K. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046.

    • Search Google Scholar
    • Export Citation
  • Spruill, C. A., Workman S. R. , and Taraba J. L. , 2000: Simulation of daily and monthly stream discharge from small watersheds using the SWAT model. Trans. ASABE, 43, 14311439.

    • Search Google Scholar
    • Export Citation
  • Stisen, S., and Sandholt I. , 2010: Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modeling. Hydrol. Processes, 24, 879891.

    • Search Google Scholar
    • Export Citation
  • Su, F., Hong Y. , and Lettenmaier D. P. , 2007: Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata basin. J. Hydrometeor., 9, 622640.

    • Search Google Scholar
    • Export Citation
  • Tobin, K. J., and Bennett M. E. , 2009: Using SWAT to model streamflow in two river basins with ground and satellite precipitation data. J. Amer. Water Resour. Assoc., 45, 253271, doi:10.1111/j.1752-1688.2008.00276.x.

    • Search Google Scholar
    • Export Citation
  • van Griensven, A., and Meixner T. , 2004: Dealing with unidentifiable sources of uncertainty within environmental models. Proc. IEMSS Int. Congress, Osnabruck, Germany, IEMSS, 14–17.

    • Search Google Scholar
    • Export Citation
  • van Griensven, A., Meixner T. , Grunwald S. , Bishop T. , DiLuzio M. , and Srinisvan R. , 2006: A global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol., 324, 1023, doi:10.1016/j.jhydrol.2005.09.008.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin A. P. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Yilmaz, K. K., Hogue T. S. , Hsu K.-L. , Sorooshian S. , Gupta H. V. , and Wagener T. , 2005: Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting. J. Hydrometeor., 6, 497517.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1485 346 18
PDF Downloads 1131 208 12