Multimodel Analysis of Energy and Water Fluxes: Intercomparisons between Operational Analyses, a Land Surface Model, and Remote Sensing

Raghuveer K. Vinukollu Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, and Swiss Re, Armonk, New York

Search for other papers by Raghuveer K. Vinukollu in
Current site
Google Scholar
PubMed
Close
,
Justin Sheffield Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Justin Sheffield in
Current site
Google Scholar
PubMed
Close
,
Eric F. Wood Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Eric F. Wood in
Current site
Google Scholar
PubMed
Close
,
Michael G. Bosilovich NASA GSFC Global Modeling and Assimilation Office, Greenbelt, Maryland

Search for other papers by Michael G. Bosilovich in
Current site
Google Scholar
PubMed
Close
, and
David Mocko NASA GSFC Global Modeling and Assimilation Office, Greenbelt, Maryland, and Science Applications International Corporation, McLean, Virginia

Search for other papers by David Mocko in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using data from seven global model operational analyses (OA), one land surface model, and various remote sensing retrievals, the energy and water fluxes over global land areas are intercompared for 2003/04. Remote sensing estimates of evapotranspiration (ET) are obtained from three process-based models that use input forcings from multisensor satellites. An ensemble mean (linear average) of the seven operational (mean-OA) models is used primarily to intercompare the fluxes with comparisons performed at both global and basin scales. At the global scale, it is found that all components of the energy budget represented by the ensemble mean of the OA models have a significant bias. Net radiation estimates had a positive bias (global mean) of 234 MJ m−2 yr−1 (7.4 W m−2) as compared to the remote sensing estimates, with the latent and sensible heat fluxes biased by 470 MJ m−2 yr−1 (13.3 W m−2) and −367 MJ m−2 yr−1 (11.7 W m−2), respectively. The bias in the latent heat flux is affected by the bias in the net radiation, which is primarily due to the biases in the incoming shortwave and outgoing longwave radiation and to the nudging process of the operational models. The OA models also suffer from improper partitioning of the surface heat fluxes. Comparison of precipitation (P) analyses from the various OA models, gauge analysis, and remote sensing retrievals showed better agreement than the energy fluxes. Basin-scale comparisons were consistent with the global-scale results, with the results for the Amazon in particular showing disparities between OA and remote sensing estimates of energy fluxes. The biases in the fluxes are attributable to a combination of errors in the forcing from the OA atmospheric models and the flux calculation methods in their land surface schemes. The atmospheric forcing errors are mainly attributable to high shortwave radiation likely due to the underestimation of clouds, but also precipitation errors, especially in water-limited regions.

Corresponding author address: Eric Wood, CEE Department, EQUAD-Olden Street, Princeton University, Princeton, NJ 08544. E-mail: efwood@princeton.edu

Abstract

Using data from seven global model operational analyses (OA), one land surface model, and various remote sensing retrievals, the energy and water fluxes over global land areas are intercompared for 2003/04. Remote sensing estimates of evapotranspiration (ET) are obtained from three process-based models that use input forcings from multisensor satellites. An ensemble mean (linear average) of the seven operational (mean-OA) models is used primarily to intercompare the fluxes with comparisons performed at both global and basin scales. At the global scale, it is found that all components of the energy budget represented by the ensemble mean of the OA models have a significant bias. Net radiation estimates had a positive bias (global mean) of 234 MJ m−2 yr−1 (7.4 W m−2) as compared to the remote sensing estimates, with the latent and sensible heat fluxes biased by 470 MJ m−2 yr−1 (13.3 W m−2) and −367 MJ m−2 yr−1 (11.7 W m−2), respectively. The bias in the latent heat flux is affected by the bias in the net radiation, which is primarily due to the biases in the incoming shortwave and outgoing longwave radiation and to the nudging process of the operational models. The OA models also suffer from improper partitioning of the surface heat fluxes. Comparison of precipitation (P) analyses from the various OA models, gauge analysis, and remote sensing retrievals showed better agreement than the energy fluxes. Basin-scale comparisons were consistent with the global-scale results, with the results for the Amazon in particular showing disparities between OA and remote sensing estimates of energy fluxes. The biases in the fluxes are attributable to a combination of errors in the forcing from the OA atmospheric models and the flux calculation methods in their land surface schemes. The atmospheric forcing errors are mainly attributable to high shortwave radiation likely due to the underestimation of clouds, but also precipitation errors, especially in water-limited regions.

Corresponding author address: Eric Wood, CEE Department, EQUAD-Olden Street, Princeton University, Princeton, NJ 08544. E-mail: efwood@princeton.edu
Save
  • Adam, J. C., and Lettenmaier D. P. , 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257, doi:10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Adam, J. C., Clark E. A. , Lettenmaier D. P. , and Wood E. F. , 2006: Correction of global precipitation products for orographic effects. J. Climate, 19, 1538.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2004: Understanding hydrometeorology using global models. Bull. Amer. Meteor. Soc., 85, 1673.

  • Betts, A. K., Viterbo P. , and Beljaars A. C. M. , 1998: Comparison of the land-surface interaction in the ECMWF reanalysis model with the 1987 FIFE data. Mon. Wea. Rev., 126, 186198.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , and Viterbo P. , 1999: Basin-scale surface water and energy budgets for the Mississippi from the ECMWF reanalysis. J. Geophys. Res., 104D, 19 29319 306.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , Bosilovich M. , Viterbo P. , Zhang Y. , and Rossow W. B. , 2003a: Intercomparison of water and energy budgets for five Mississippi subbasins between ECMWF reanalysis (ERA-40) and NASA Data Assimilation Office fvGCM for 1990–1999. J. Geophys. Res., 108, 8618, doi:10.1029/2002JD003127.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , and Viterbo P. , 2003b: Evaluation of the ERA-40 surface water budget and surface temperature for the Mackenzie River basin. J. Hydrometeor., 4, 11941211.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , Viterbo P. , Dai A. G. , and Marengo J. , 2005: Hydrometeorology of the Amazon in ERA-40. J. Hydrometeor., 6, 764774.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Zhao M. , Dirmeyer P. A. , and Beljaars A. C. M. , 2006: Comparison of ERA40 and NCEP/DOE near-surface data sets with other ISLSCP-II data sets. J. Geophys. Res., 111, D22S04, doi:10.1029/2006JD007174.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Köhler M. , and Zhang Y. C. , 2009: Comparison of river basin hydrometeorology in ERA-Interim and ERA-40 reanalyses with observations. J. Geophys. Res., 114, D02101, doi:10.1029/2008JD010761.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Lawford R. , 2002: Coordinated Enhanced Observing Period (CEOP) International Workshop. Bull. Amer. Meteor. Soc., 83, 14951499.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., Mocko D. , Roads J. O. , and Ruane A. , 2009: A multimodel analysis for the Coordinated Enhanced Observing Period (CEOP). J. Hydrometeor., 10, 912934.

    • Search Google Scholar
    • Export Citation
  • Callede, J., Guyot J. L. , Ronchail J. , Molinier M. , and De Oliveira E. , 2002: The River Amazon at Obidos (Brazil): Statistical studies of the discharges and water balance. Hydrol. Sci. J., 47, 321333.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1995: Absorption of solar radiation by clouds: Observations versus models. Science, 267, 496499.

  • Chahine, M. T., 1992: The hydrological cycle and its influence on climate. Nature, 359, 373380.

  • Cherkauer, K. A., Bowling L. C. , and Lettenmaier D. P. , 2003: Variable infiltration capacity cold land process model updates. Global Planet. Change, 38, 151159.

    • Search Google Scholar
    • Export Citation
  • Chou, S. C., Marengo J. A. , Dereczynski C. P. , Waldheim P. V. , and Manzi A. O. , 2007: Comparison of CPTEC GCM and Eta model results with observational data from the Rondonia LBA reference site, Brazil. J. Meteor. Soc. Japan, 85, 2542.

    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108, 8842, doi:10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Costa, M. H., and Foley J. A. , 1997: Water balance of the Amazon Basin: Dependence on vegetation cover and canopy conductance. J. Geophys. Res., 102D, 23 97323 989.

    • Search Google Scholar
    • Export Citation
  • Cote, J., Gravel S. , Methot A. , Patoine A. , Roch M. , and Staniforth A. , 1998: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 13731395.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Gao X. , Zhao M. , Guo Z. , Oki T. , and Hanasaki N. , 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811397.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , andTarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and Trenberth K. E. , 2008: The annual cycle of the energy budget. Part I: Global mean and land–ocean exchanges. J. Climate, 21, 22972312.

    • Search Google Scholar
    • Export Citation
  • Fekete, B., Vörösmarty C. , and Grabs W. , 2000: Global, composite runoff fields based on observed river discharge and simulated water balances. Global Runoff Data Centre Rep., 120 pp. [Available online at http://www.grdc.sr.unh.edu/html/paper/ReportUS.pdf.]

    • Search Google Scholar
    • Export Citation
  • Fernandes, K., Fu R. , and Betts A. K. , 2008: How well does the ERA40 surface water budget compare to observations in the Amazon River basin? J. Geophys. Res., 113, D11117, doi:10.1029/2007JD009220.

    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., Tu K. P. , and Baldocchi D. D. , 2008: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ., 112, 901919.

    • Search Google Scholar
    • Export Citation
  • Gao, H., Tang Q. , Ferguson C. R. , Wood E. F. , and Lettenmaier D. , 2010: Estimating the water budget of major U.S. river basins via remote sensing. Int. J. Remote Sens., 31, 39553978.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., and Prata A. J. , 1996: Downwelling longwave fluxes at continental surfaces—A comparison of observations with GCM simulations and implications for the global land surface radiation budget. J. Climate, 9, 646655.

    • Search Google Scholar
    • Export Citation
  • Hinkelman, L. M., Ackerman T. P. , and Marchand R. T. , 1999: An evaluation of NCEP Eta model predictions of surface energy budget and cloud properties by comparison with measured ARM data. J. Geophys. Res., 104D, 19 53519 549.

    • Search Google Scholar
    • Export Citation
  • Hirai, M., Sakashita T. , Kitagawa H. , Tsuyuki T. , Hosaka M. , and Oh’Izumi M. , 2007: Development and validation of a new land surface model for JMA’s operational global model using the CEOP observation dataset. J. Meteor. Soc. Japan, 85, 124.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Morrissey M. M. , Bolvin D. T. , Curtis S. , Joyce R. , McGavock B. , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Jiménez, C., and Coauthors, 2011: Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res., 116, D02102, doi:10.1029/2010JD014545.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S.-K. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002a: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and Coauthors, 2002b: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83, 10191037.

  • Karam, H. N., and Bras R. L. , 2008: Climatological basin-scale Amazonian evapotranspiration estimated through a water budget analysis. J. Hydrometeor., 9, 10481060.

    • Search Google Scholar
    • Export Citation
  • Koike, T., 2004: The Coordinated Enhanced Observing Period—An initial step for integrated global water cycle observations. WMO Bull., 53, 115121.

    • Search Google Scholar
    • Export Citation
  • Lawford, R., and Coauthors, 2006: U.S. contributions to the CEOP. Bull. Amer. Meteor. Soc., 87, 927939.

  • Levinson, D. H., Ed., 2005: State of the climate in 2004. Bull. Amer. Meteor. Soc., 86, S1S86.

  • Levinson, D. H., and Waple A. M. , Eds., 2004: State of the climate in 2003. Bull. Amer. Meteor. Soc., 85, S1S72.

  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99D, 14 41514 428.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , and Wood E. F. , 1996: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res., 101D, 21 40321 422.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., Berbery E. H. , Mitchell K. E. , and Betts A. K. , 2007: Relationships between land surface and near-surface atmospheric variables in the NCEP North American Regional Reanalysis. J. Hydrometeor., 8, 11841203.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., 2005: Characteristics and spatio-temporal variability of the Amazon River basin water budget. Climate Dyn., 24, 1122.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., O’Donnell G. M. , Lettenmaier D. P. , and Roads J. O. , 2001: Evaluation of the land surface water budget in NCEP/NCAR and NCEP/DOE reanalyses using an off-line hydrologic model. J. Geophys. Res., 106D, 17 84117 862.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., Gash J. H. , Holmes T. R. H. , de Jeu R. A. M. , and Dolman A. J. , 2010: Global canopy interception from satellite observations. J. Geophys. Res., 115, D16122, doi:10.1029/2009JD013530.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and Jones P. D. , 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1965: Evaporation and the environment. Symp. Soc. Exp. Biol., 19, 205234.

  • Mu, Q., Heinsch F. A. , Zhao M. , and Running S. W. , 2007: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ., 111, 519536.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2011: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230.

    • Search Google Scholar
    • Export Citation
  • Oki, T., Musiake K. , Matsuyama H. , and Masuda K. , 1995: Global atmospheric water-balance and runoff from large river basins. Hydrol. Processes, 9, 655678.

    • Search Google Scholar
    • Export Citation
  • Oki, T., Nishimura T. , and Dirmeyer P. , 1999: Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). J. Meteor. Soc. Japan, 77, 235255.

    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., and Taylor R. J. , 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 8182.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., Subasilar B. , Zhang G. J. , Conant W. , Cess R. D. , Kiehl J. T. , Grassl H. , and Shi L. , 1995: Warm pool heat budget and shortwave cloud forcing: A missing physics? Science, 267, 499503.

    • Search Google Scholar
    • Export Citation
  • Ramillien, G., Frappart F. , Güntner A. , Ngo-Duc T. , Cazenave A. , and Laval K. , 2006: Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry. Water Resour. Res., 42, W10403, doi:10.1029/2005WR004331.

    • Search Google Scholar
    • Export Citation
  • Raschke, E., Bakan S. , and Kinne S. , 2006: An assessment of radiation budget data provided by the ISCCP and GEWEX-SRB. Geophys. Res. Lett., 33, L07812, doi:10.1029/2005GL025503.

    • Search Google Scholar
    • Export Citation
  • Rikus, L., 2007: Validating basic surface variables in the Australian Bureau of Meteorology model with CEOP EOP3 in-situ data. J. Meteor. Soc. Japan, 85, 7397.

    • Search Google Scholar
    • Export Citation
  • Ruane, A. C., and Roads J. O. , 2007: The diurnal cycle of water and energy over the continental United States from three reanalyses. J. Meteor. Soc. Japan, 85, 117143.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., and Schneider U. , 2005: Calculation of gridded precipitation. Proc. 2nd Workshop of the Int. Precipitation Working Group (IPWG), Monterey, CA, EUMETSAT, 231–247.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Viterbo P. , Luthi D. , and Schar C. , 2004: Inferring changes in terrestrial water storage using ERA-40 reanalysis data: The Mississippi River basin. J. Climate, 17, 20392057.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Wood E. F. , 2007: Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res., 112D, D17115, doi:10.1029/2006JD008288.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Andreadis K. M. , Wood E. F. , and Lettenmaier D. P. , 2009a: Global and continental drought in the second half of the twentieth century: Severity–area–duration analysis and temporal variability of large-scale events. J. Climate, 22, 19621981.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Ferguson C. R. , Troy T. J. , Wood E. F. , and McCabe M. F. , 2009b: Closing the terrestrial water budget from satellite remote sensing. Geophys. Res. Lett., 36, L07403, doi:10.1029/2009GL037338.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Livneh B. , and Wood E. F. , 2012: Representation of terrestrial hydrology and large scale drought of the Continental United States from the North American Regional Reanalysis. J. Hydrometeor., in press.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., Gupta S. K. , Cox S. J. , Chiacchioo M. , and Mikovitz C. , 2000: The WCRP/GEWEX Surface Radiation Budget Project Release 2: An assessment of surface fluxes at 1 degree resolution. IRS 2000: Current Problems in Atmospheric Radiation, W. L. Smith and Y. M. Timofeyev, Eds., A. Deepak Publishers, 439–459.

    • Search Google Scholar
    • Export Citation
  • Su, F., Adam J. C. , Trenberth K. E. , and Lettenmaier D. P. , 2006: Evaluation of surface water fluxes of the pan-Arctic land region with a land surface model and ERA-40 reanalysis. J. Geophys. Res., 111, D05110, doi:10.1029/2005JD006387.

    • Search Google Scholar
    • Export Citation
  • Su, Z., 2002: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci., 6, 8599.

  • Szeto, K. K., 2007: Assessing water and energy budgets for the Saskatchewan River Basin. J. Meteor. Soc. Japan, 85, 167186.

  • Trenberth, K. E., Fasullo J. T. , and Kiehl J. , 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323.

  • Troy, T. J., Wood E. F. , and Sheffield J. , 2008: An efficient calibration method for continental-scale land surface modeling. Water Resour. Res., 44, W09411, doi:10.1029/2007WR006513.

    • Search Google Scholar
    • Export Citation
  • Vinukollu, R. K., Wood E. F. , Ferguson C. R. , and Fisher J. B. , 2011: Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ., 115, 801823.

    • Search Google Scholar
    • Export Citation
  • Wild, M., and Roeckner E. , 2006: Radiative fluxes in the ECHAM5 general circulation model. J. Climate, 19, 37923809.

  • Wild, M., Ohmura A. , Gilgen H. , and Roeckner E. , 1995: Validation of general circulation model radiative fluxes using surface observations. J. Climate, 8, 13091324.

    • Search Google Scholar
    • Export Citation
  • Wild, M., Ohmura A. , Gilgen H. , Morcrette J. J. , and Slingo A. , 2001: Evaluation of downward longwave radiation in general circulation models. J. Climate, 14, 32273239.

    • Search Google Scholar
    • Export Citation
  • Yang, K., and Coauthors, 2007: Initial CEOP-based review of the prediction skill of operational general circulation models and land surface models. J. Meteor. Soc. Japan, 85, 99116.

    • Search Google Scholar
    • Export Citation
  • Yeh, P. J. F., Irizarry M. , and Eltahir E. A. B. , 1998: Hydroclimatology of Illinois: A comparison of monthly evaporation estimates based on atmospheric water balance and soil water balance. J. Geophys. Res., 103D, 19 82319 837.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Rossow W. B. , and Stackhouse P. W. Jr., 2007: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the near-surface atmosphere. J. Geophys. Res., 112, D01102, doi:10.1029/2005JD007008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 276 48 7
PDF Downloads 108 24 5