Observations of Wintertime U.S. West Coast Precipitating Systems with W-Band Satellite Radar and Other Spaceborne Instruments

Sergey Y. Matrosov Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Sergey Y. Matrosov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The potential of CloudSat W-band radar for observing wintertime storms affecting the West Coast of North America is evaluated. Storms having high hydrological impact often result from landfalls of “atmospheric rivers” (“ARs”), which are the narrow elongated regions of water vapor transport from the tropics. CloudSat measurements are used for retrievals of rain rate R and cloud ice water path (IWP) along the satellite ground track over ocean and land. These retrievals present quasi-instantaneous vertical cross sections of precipitating systems with high-resolution information about hydrometeors. This information is valuable in coastal areas with complex terrain where observations with existing instrumentation, including ground-based radars, are limited. CloudSat reflectivity enhancements [i.e., bright band (BB)] present a way to estimate freezing levels, indicating transitions between rainfall and snowfall. CloudSat estimates of these levels were validated using data from radiosonde soundings and compared to model and microwave sounder data. Comparisons of CloudSat retrievals of rain rates with estimates from ground-based radars in the areas where measurements from these radars were available indicated an agreement within retrieval uncertainties, which were around 50%. The utility of CloudSat was illustrated for case studies of pronounced AR events at landfall and over ocean. Initial analysis of CloudSat crossings of ARs during the 2006/07 season were used for rainfall regime prevalence assessment. It indicated that stratiform rain, which often had BB features, warm rain, and mixed rain were observed with about 26%, 24%, and 50% frequency. Stratiform regions generally had higher rain rates. Significant correlation (~0.72) between mean values of IWP and rain rate was observed for stratiform rainfall.

Corresponding author address: Sergey Y. Matrosov, R/PSD2, 325 Broadway, Boulder, CO 80305. E-mail: sergey.matrosov@noaa.gov

Abstract

The potential of CloudSat W-band radar for observing wintertime storms affecting the West Coast of North America is evaluated. Storms having high hydrological impact often result from landfalls of “atmospheric rivers” (“ARs”), which are the narrow elongated regions of water vapor transport from the tropics. CloudSat measurements are used for retrievals of rain rate R and cloud ice water path (IWP) along the satellite ground track over ocean and land. These retrievals present quasi-instantaneous vertical cross sections of precipitating systems with high-resolution information about hydrometeors. This information is valuable in coastal areas with complex terrain where observations with existing instrumentation, including ground-based radars, are limited. CloudSat reflectivity enhancements [i.e., bright band (BB)] present a way to estimate freezing levels, indicating transitions between rainfall and snowfall. CloudSat estimates of these levels were validated using data from radiosonde soundings and compared to model and microwave sounder data. Comparisons of CloudSat retrievals of rain rates with estimates from ground-based radars in the areas where measurements from these radars were available indicated an agreement within retrieval uncertainties, which were around 50%. The utility of CloudSat was illustrated for case studies of pronounced AR events at landfall and over ocean. Initial analysis of CloudSat crossings of ARs during the 2006/07 season were used for rainfall regime prevalence assessment. It indicated that stratiform rain, which often had BB features, warm rain, and mixed rain were observed with about 26%, 24%, and 50% frequency. Stratiform regions generally had higher rain rates. Significant correlation (~0.72) between mean values of IWP and rain rate was observed for stratiform rainfall.

Corresponding author address: Sergey Y. Matrosov, R/PSD2, 325 Broadway, Boulder, CO 80305. E-mail: sergey.matrosov@noaa.gov
Save
  • Haynes, J. M., L’Ecuyer T. S. , Stephens G. L. , Miller S. D. , Mitrescu C. , Wood N. B. , and Tanelli S. , 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Jankov, I., Bao J. W. , Neiman P. J. , Schultz P. J. , Yuan H. , and White A. B. , 2009: Evaluation and comparisons of microphysical algorithms in ARW-WRF model simulations of atmospheric river events affecting the California coast. J. Hydrometeor., 10, 847870.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., Villarini G. , and Smith J. A. , 2010: Radar-rainfall uncertainties: Where are we after thirty years of effort? Bull. Amer. Meteor. Soc., 91, 8794.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., Ringerud S. , Crook J. , Randel D. , and Berg W. , 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Potential for attenuation-based estimations of rainfall rate from CloudSat. Geophys. Res. Lett., 34, L05817, doi:10.1029/2006GL029161.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2008: Assessment of radar signal attenuation caused by the melting hydrometeor layer. IEEE Trans. Geosci. Remote Sens., 46, 10391047.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2009: Simultaneous estimates of cloud and rainfall parameters in the atmospheric vertical column above the Atmospheric Radiation Measurement Program southern Great Plains site. J. Geophys. Res., 114, D22201, doi:10.1029/2009JD012004.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2010a: CloudSat studies of stratiform precipitation systems observed in the vicinity of the southern Great Plains Atmospheric Radiation Measurement site. J. Appl. Meteor. Climatol., 49, 17561765.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2010b: Synergetic use of millimeter- and centimeter-wavelength radars for retrievals of cloud and rainfall parameters. Atmos. Chem. Phys., 10, 33213331, doi:10.5194/acp-10-3321-2010.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2011: CloudSat measurements of landfalling hurricanes Gustav and Ike (2008). J. Geophys. Res., 116, D01203, doi:10.1029/2010JD014506.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., and Heymsfield A. J. , 2008: Estimating ice content and extinction in precipitating cloud systems from CloudSat radar measurements. J. Geophys. Res., 113, D00A05, doi:10.1029/2007JD009633.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., and Battaglia A. , 2009: Influence of multiple scattering on CloudSat measurements in snow: A model study. Geophys. Res. Lett., 36, L12806, doi:10.1029/2009GL038704.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Battaglia A. , and Rodriguez P. , 2008: Effects of multiple scattering on attenuation-based retrievals of stratiform rainfall from CloudSat. J. Atmos. Oceanic Technol., 25, 21992208.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Kuo Y.-H. , Wee T.-K. , Ma Z. , Taylor G. H. , and Dettinger M. D. , 2008a: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Lundquist J. , and Dettinger M. D. , 2008b: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Wick G. A. , 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Rotunno R. , 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical profile and atmospheric river characteristics. Mon. Wea. Rev., 133, 889910.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Wick G. A. , Gutman S. I. , Dettinger M. D. , Cayan D. R. , and White A. B. , 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L12801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Matrosov S. Y. , and Campbell J. , 2007: CloudSat spaceborne 94 GHz radar bright bands in the melting layer: An attenuation-driven upside-down lidar analog. Geophys. Res. Lett., 34, L16818, doi:10.1029/2007GL030291.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., Durden S. L. , Im E. , Pak K. S. , Reinke D. , Partain P. , Marchand R. , and Haynes J. , 2008: CloudSat’s cloud profiling radar after 2 years in orbit: Performance, external calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573.

    • Search Google Scholar
    • Export Citation
  • White, A. B., Gottas D. J. , Henkel A. F. , Neiman P. J. , Ralph F. M. , and Gutman S. I. , 2010: Developing a performance measure for snow-level forecasts. J. Hydrometeor., 11, 739753.

    • Search Google Scholar
    • Export Citation
  • Wick, G. A., Kuo Y.-H. , Ralph F. M. , Wee T.-K. , and Neiman P. J. , 2008: Intercomparison of integrated water vapor retrievals from SSM/I and COSMIC. Geophys. Res. Lett., 35, L21805, doi:10.1029/2008GL035126.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Newell R. E. , 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 198 36 7
PDF Downloads 127 40 4