Modeling the Spatial Distribution of Snow Cover in the Dudhkoshi Region of the Nepal Himalayas

Maheswor Shrestha Department of Civil Engineering, The University of Tokyo, Tokyo, Japan

Search for other papers by Maheswor Shrestha in
Current site
Google Scholar
PubMed
Close
,
Lei Wang Department of Civil Engineering, The University of Tokyo, Tokyo, Japan

Search for other papers by Lei Wang in
Current site
Google Scholar
PubMed
Close
,
Toshio Koike Department of Civil Engineering, The University of Tokyo, Tokyo, Japan

Search for other papers by Toshio Koike in
Current site
Google Scholar
PubMed
Close
,
Yongkang Xue Department of Geography, University of California, Los Angeles, Los Angeles, California

Search for other papers by Yongkang Xue in
Current site
Google Scholar
PubMed
Close
, and
Yukiko Hirabayashi Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan

Search for other papers by Yukiko Hirabayashi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, a distributed biosphere hydrological model with three-layer energy-balance snow physics [an improved version of the Water and Energy Budget–based Distributed Hydrological Model (WEB-DHM-S)] is applied to the Dudhkoshi region of the eastern Nepal Himalayas to estimate the spatial distribution of snow cover. Simulations are performed at hourly time steps and 1-km spatial resolution for the 2002/03 snow season during the Coordinated Enhanced Observing Period (CEOP) third Enhanced Observing Period (EOP-3). Point evaluations (snow depth and upward short- and longwave radiation) at Pyramid (a station of the CEOP Himalayan reference site) confirm the vertical-process representations of WEB-DHM-S in this region. The simulated spatial distribution of snow cover is evaluated with the Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day maximum snow-cover extent (MOD10A2), demonstrating the model’s capability to accurately capture the spatiotemporal variations in snow cover across the study area. The qualitative pixel-to-pixel comparisons for the snow-free and snow-covered grids reveal that the simulations agree well with the MODIS data to an accuracy of 90%. Simulated nighttime land surface temperatures (LST) are comparable to the MODIS LST (MOD11A2) with mean absolute error of 2.42°C and mean relative error of 0.77°C during the study period. The effects of uncertainty in air temperature lapse rate, initial snow depth, and snow albedo on the snow-cover area (SCA) and LST simulations are determined through sensitivity runs. In addition, it is found that ignoring the spatial variability of remotely sensed cloud coverage greatly increases bias in the LST and SCA simulations. To the authors’ knowledge, this work is the first to adopt a distributed hydrological model with a physically based multilayer snow module to estimate the spatial distribution of snow cover in the Himalayan region.

Corresponding author address: Maheswor Shrestha, Department of Civil Engineering, The University of Tokyo, 7-3-1 Hongo, 113-8656 Tokyo, Japan. E-mail: maheswor@hydra.t.u-tokyo.ac.jp

Abstract

In this study, a distributed biosphere hydrological model with three-layer energy-balance snow physics [an improved version of the Water and Energy Budget–based Distributed Hydrological Model (WEB-DHM-S)] is applied to the Dudhkoshi region of the eastern Nepal Himalayas to estimate the spatial distribution of snow cover. Simulations are performed at hourly time steps and 1-km spatial resolution for the 2002/03 snow season during the Coordinated Enhanced Observing Period (CEOP) third Enhanced Observing Period (EOP-3). Point evaluations (snow depth and upward short- and longwave radiation) at Pyramid (a station of the CEOP Himalayan reference site) confirm the vertical-process representations of WEB-DHM-S in this region. The simulated spatial distribution of snow cover is evaluated with the Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day maximum snow-cover extent (MOD10A2), demonstrating the model’s capability to accurately capture the spatiotemporal variations in snow cover across the study area. The qualitative pixel-to-pixel comparisons for the snow-free and snow-covered grids reveal that the simulations agree well with the MODIS data to an accuracy of 90%. Simulated nighttime land surface temperatures (LST) are comparable to the MODIS LST (MOD11A2) with mean absolute error of 2.42°C and mean relative error of 0.77°C during the study period. The effects of uncertainty in air temperature lapse rate, initial snow depth, and snow albedo on the snow-cover area (SCA) and LST simulations are determined through sensitivity runs. In addition, it is found that ignoring the spatial variability of remotely sensed cloud coverage greatly increases bias in the LST and SCA simulations. To the authors’ knowledge, this work is the first to adopt a distributed hydrological model with a physically based multilayer snow module to estimate the spatial distribution of snow cover in the Himalayan region.

Corresponding author address: Maheswor Shrestha, Department of Civil Engineering, The University of Tokyo, 7-3-1 Hongo, 113-8656 Tokyo, Japan. E-mail: maheswor@hydra.t.u-tokyo.ac.jp
Save
  • Alford, D., and Armstrong R. , 2010: The role of glaciers in stream flow from the Nepal Himalaya. Cryosphere Discuss., 4, 469494, doi:10.5194/tcd-4-469-2010.

    • Search Google Scholar
    • Export Citation
  • Anderson, E. A., 1976: A point energy and mass balance model of a snow cover. NOAA Tech. Rep. NWS 19, 150 pp.

  • Andreadis, K. M., and Lettenmaier D. P. , 2006: Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv. Water Resour., 29, 872886.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., Chiao S. , Lang T. J. , Burbank D. , and Putkonen J. , 2006: From weather to climate—Seasonal and interannual variability of storms and implications for erosion processes in the Himalaya. Tectonics, Climate, and Landscape Evolution, S. D. Willett et al., Eds., Geological Society of America Special Papers, Vol. 398, Geological Society of America, 17–38.

    • Search Google Scholar
    • Export Citation
  • Bergström, S., 1992: The HBV model—Its structure and applications. SMHI Rep. RH 4, 35 pp.

  • Blöschl, G., Kirnbauer R. , and Gutknecht D. , 1991: Distributed snowmelt simulations in an Alpine catchment: 1. Model evaluation on the basis of snow cover patterns. Water Resour. Res., 27, 31713179.

    • Search Google Scholar
    • Export Citation
  • Bookhagen, B., and Burbank D. W. , 2010: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res., 115, F03019, doi:10.1029/2009JF001426.

    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., and Coauthors, 2003: Simulation of high-latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e) 1: Experiment description and summary intercomparisons. Global Planet. Change, 38, 130.

    • Search Google Scholar
    • Export Citation
  • Braun, L. N., Grabs W. , and Rana B. , 1993: Application of a conceptual precipitation-runoff model in the Langtang Khola basin, Nepal Himalaya. Proc. Int. Symp. on Snow and Glacier Hydrology, Kathmandu, Nepal, IAHS, 221–237.

    • Search Google Scholar
    • Export Citation
  • Brown, L., Robin T. , and Ming W. K. , 2008: Using satellite imagery to validate snow distribution simulated by a hydrological model in large northern basins. Hydrol. Processes, 22, 27772787.

    • Search Google Scholar
    • Export Citation
  • Brown, R., Bartlett P. , Mackay M. , and Verseghy D. , 2006: Evaluation of snow cover in CLASS for SnowMIP. Atmos.–Ocean, 44, 223238.

  • Brun, E., Martin E. , Simon V. , Gendre C. , and Coleou C. , 1989: An energy and mass model of snow cover suitable for operational avalanche forecasting. J. Glaciol., 35, 333341.

    • Search Google Scholar
    • Export Citation
  • Chalise, S. R., Kansakar S. R. , Rees G. , Croker K. , and Zaidman M. , 2003: Management of water resources and low flow estimation for the Himalayan basins of Nepal. J. Hydrol., 282, 2535.

    • Search Google Scholar
    • Export Citation
  • Corbari, C., Sobrino J. A. , Mancini M. , and Hidalgo V. , 2010: Land surface temperature representativeness in a heterogeneous area through a distributed energy-water balance model and remote sensing data. Hydrol. Earth Syst. Sci., 14, 21412151, doi:10.5194/hess-14-2141-2010.

    • Search Google Scholar
    • Export Citation
  • Crawford, T. M., and Duchon C. E. , 1999: An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J. Appl. Meteor., 38, 474480.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 18891903.

    • Search Google Scholar
    • Export Citation
  • Dey, B., Goswami D. C. , and Rango A. , 1983: Utilization of satellite snow cover observations for seasonal streamflow estimate in the western Himalayas. Nord. Hydrol., 14, 257266.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., Henderson-Sellers A. , and Kennedy P. J. , 1993: Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, 72 pp.

    • Search Google Scholar
    • Export Citation
  • FAO, 2003: Digital soil map of the world and derived soil properties. Land and Water Digital Media Series, United Nations Food and Agriculture Organization, CD-ROM disc 1.

    • Search Google Scholar
    • Export Citation
  • Fukushima, Y., Wantabe O. , and Higuchi K. , 1991: Estimation of stream flow change in global warming in a glacier covered high mountain area of Nepal Himalaya. Proc. Int. Symp. on Snow, Hydrology and Forests in High Alpine Areas, Vienna, Austria, IAHS, 181–188.

    • Search Google Scholar
    • Export Citation
  • Garen, D. C., and Marks D. , 2005: Spatially distributed energy balance snowmelt modeling in a mountainous river basin: Estimation of meteorological inputs and verification of model results. J. Hydrol., 315, 126153.

    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., and Small E. E. , 2010: A method for the determination of the hydraulic properties of soil from MODIS surface temperature for use in land-surface models. Water Resour. Res., 46, W06520, doi:10.1029/2009WR008203.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., Box J. E. , Casey K. A. , Hook S. J. , Shuman C. A. , and Steffen K. , 2008: Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland. Remote Sens. Environ., 112, 37393749.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., Droogers P. , de Jong S. M. , and Bierkens M. E. P. , 2009: Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ., 113, 4049.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., van Beek L. P. H. , and Bierkens M. F. P. , 2010: Climate change will affect the Asian water towers. Science, 328, 13821385.

    • Search Google Scholar
    • Export Citation
  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover. U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory Special Rep. 91-16, 49 pp.

    • Search Google Scholar
    • Export Citation
  • Kayastha, R. B., Ageta Y. , and Fujita K. , 2005: Use of positive degree day methods for calculating snow and ice melting and discharge in glacierized basins in the Langtang Valley, Central Nepal. Climate and Hydrology of Mountain Areas, C. de Jong, D. Collins, and R. Ranzi, Eds., Wiley, 7–14.

    • Search Google Scholar
    • Export Citation
  • Koike, T., 2004: The Coordinated Enhanced Observing Period—An initial step for integrated global water cycle observation. WMO Bull., 53, 115121.

    • Search Google Scholar
    • Export Citation
  • Konz, M., Uhlenbrook S. , Braun L. , Shrestha A. , and Demuth S. , 2007: Implementation of a process based catchment model in a poorly gauged, highly glacierized Himalayan headwater. Hydrol. Earth Syst. Sci., 11, 13231339.

    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., and Rango A. , 1994: A simple energy budget algorithm for the snowmelt runoff model. Water Resour. Res., 30, 15151527.

  • Lang, T. J., and Barros A. P. , 2004: Winter storms in the central Himalayas. J. Meteor. Soc. Japan, 82, 829844.

  • Letsinger, S. L., and Olyphant G. A. , 2007: Distributed energy-balance modeling of snow-cover evolution and melt in rugged terrain: Tobacco Root Mountains, Montana, USA. J. Hydrol., 336, 4860.

    • Search Google Scholar
    • Export Citation
  • Li, X. G., and Williams M. W. , 2008: Snowmelt runoff modeling in an arid mountain watershed, Tarim Basin, China. Hydrol. Processes, 22, 39313940.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 1999: Interrelationships among snow distribution, snowmelt, and snow cover depletion: Implications for atmospheric, hydrologic, and ecologic modeling. J. Appl. Meteor., 38, 14741487.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and Elder K. , 2006: A distributed snow-evolution modeling system (SnowModel). J. Hydrometeor., 7, 12591276.

  • Marks, D., Domingo J. , Susong D. , Link T. , and David G. , 1999: A spatially distributed energy balance snowmelt model for application in mountain basins. Hydrol. Processes, 13, 19351959.

    • Search Google Scholar
    • Export Citation
  • Martinec, J., Rango A. , and Major E. , 1983: The Snowmelt-Runoff Model (SRM) user’s manual. NASA Goddard Space Flight Center Reference Publication 1100, 110 pp.

    • Search Google Scholar
    • Export Citation
  • Molotch, N. P., Painter T. H. , Bales R. C. , and Dozier J. , 2004: Incorporating remotely-sensed snow albedo into a spatially-distributed snowmelt model. Geophys. Res. Lett., 31, L03501, doi:10.1029/2003GL019063.

    • Search Google Scholar
    • Export Citation
  • Neteler, M., 2010: Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sens., 2, 333351, doi:10.3390/rs1020333.

    • Search Google Scholar
    • Export Citation
  • Painter, T. H., Rittger K. , McKenzie C. , Slaughter P. , Davis R. E. , and Dozier J. , 2009: Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ., 113, 868879.

    • Search Google Scholar
    • Export Citation
  • Rana, B., Nakawo M. , Fukushima Y. , and Ageta Y. , 1997: Application of conceptual precipitation runoff model (HYCYMODEL) in a debris covered glacierized basin in Langtang Valley, Nepal Himalaya. Ann. Glaciol., 25, 347352.

    • Search Google Scholar
    • Export Citation
  • Rango, A., Salomonson V. V. , and Foster J. L. , 1977: Seasonal streamflow estimation in the Himalayan region employing meteorological satellite snow cover observations. Water Resour. Res., 13, 109112.

    • Search Google Scholar
    • Export Citation
  • Rees, H. G., and Collins D. N. , 2006: Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrol. Processes, 20, 21572169.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9, 676705.

    • Search Google Scholar
    • Export Citation
  • Shamir, E., and Konstantine P. G. , 2007: Estimating snow depletion curves for American River basins using distributed snow modeling. J. Hydrol., 334, 162173.

    • Search Google Scholar
    • Export Citation
  • Sharma, K. P., Charles J. V. , and Berrien M. , 2000: Sensitivity of Himalayan hydrology to land use and climatic changes. Climatic Change, 47, 117139.

    • Search Google Scholar
    • Export Citation
  • Shrestha, M., Wang L. , and Koike T. , 2010a: Investigating the applicability of WEB-DHM to the Himalayan river basin of Nepal. Annu. J. Hydraul. Eng., 53, 5460.

    • Search Google Scholar
    • Export Citation
  • Shrestha, M., Wang L. , Koike T. , Xue Y. , and Hirabayashi Y. , 2010b: Improving the snow physics of WEB-DHM and its point evaluation at the SnowMIP sites. Hydrol. Earth Syst. Sci., 14, 25772594, doi:10.5194/hess-14-2577-2010.

    • Search Google Scholar
    • Export Citation
  • Shrestha, M., Wang L. , and Koike T. , 2011: Simulation of interannual variability of snow cover at Valdai (Russia) using a distributed biosphere hydrological model with improved snow physics. Annu. J. Hydraul. Eng., 54, 7378.

    • Search Google Scholar
    • Export Citation
  • Singh, P., and Jain S. K. , 2003: Modelling of streamflow and its components for a large Himalayan basin with predominant snowmelt yields. Hydrol. Sci. J., 48, 257276.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and Coauthors, 2001: The representation of snow in land surface schemes: Results from PILPS 2(d). J. Hydrometeor., 2, 725.

    • Search Google Scholar
    • Export Citation
  • Sun, S., and Xue Y. , 2001: Implementing a new snow scheme in Simplified Simple Biosphere Model (SSiB). Adv. Atmos. Sci., 18, 335354.

  • Sun, S., Jin J. M. , and Xue Y. , 1999: A simple snow–atmosphere–soil transfer model. J. Geophys. Res., 104 (D16), 19 58719 597.

  • Tang, Q., and Lettenmaier D. P. , 2010: Use of satellite snow-cover data for streamflow prediction in the Feather River Basin, California. Int. J. Remote Sens., 31, 37453762.

    • Search Google Scholar
    • Export Citation
  • Tarboton, D. G., and Luce C. H. , 1996: Utah Energy Balance Snow Accumulation and Melt Model (UEB): Computer model technical description and users guide. Utah Water Research Laboratory and USDA Forest Service Intermountain Research Station Rep., 63 pp.

    • Search Google Scholar
    • Export Citation
  • Ueno, K., Toyotsu K. , Bertolani L. , and Tartari G. , 2008: Stepwise onset of monsoon weather observed in the Nepal Himalayas. Mon. Wea. Rev., 136, 25072522.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., Ronda R. J. , Moene A. F. , de Bruin H. A. R. , and Holtslag A. A. M. , 2002: Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: A bulk model. J. Atmos. Sci., 59, 942958.

    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 1991: CLASS—A Canadian land surface scheme for GCMs. I. Soil model. Int. J. Climatol., 11, 111133.

  • Viviroli, D., Dürr H. H. , Messerli B. , Meybeck M. , and Weingartner R. , 2007: Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res., 43, W07447, doi:10.1029/2006WR005653.

    • Search Google Scholar
    • Export Citation
  • Wan, Z., 2008: New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens. Environ., 112, 5974.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and Li W. , 2001: Establishing snowmelt runoff simulating model using remote sensing data and GIS in the west of China. Int. J. Remote Sens., 22, 32673274.

    • Search Google Scholar
    • Export Citation
  • Wang, L., Koike T. , Yang K. , Jackson T. J. , Bindlish R. , and Yang D. , 2009a: Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains Experiments (SGP97 and SGP99). J. Geophys. Res., 114, D08107, doi:10.1029/2008JD010800.

    • Search Google Scholar
    • Export Citation
  • Wang, L., Koike T. , Yang K. , and Yeh P. , 2009b: Assessment of a distributed biosphere hydrological model against streamflow and MODIS land surface temperature in the upper Tone River Basin. J. Hydrol., 377, 2134.

    • Search Google Scholar
    • Export Citation
  • Wang, L., Koike T. , Yang K. , Jin R. , and Li H. , 2010: Frozen soil parameterization in a distributed biosphere hydrological model. Hydrol. Earth Syst. Sci., 14, 557571, doi:10.5194/hess-14-557-2010.

    • Search Google Scholar
    • Export Citation
  • Wang, W., Liang S. , and Meyers T. , 2008: Validating MODIS land surface temperature products using long-term nighttime ground measurements. Remote Sens. Environ., 112, 623635.

    • Search Google Scholar
    • Export Citation
  • Woodcock, F., 1976: The evaluation of yes/no forecasts for scientific and administrative purposes. Mon. Wea. Rev., 104, 12091214.

  • Xue, Y., Sun S. , Kahan D. , and Jiao Y. , 2003: The impact of parameterizations in snow physics and interface processes on the simulation of snow cover and runoff at several cold region sites. J. Geophys. Res., 108, 8859, doi:10.1029/2002JD003174.

    • Search Google Scholar
    • Export Citation
  • Yang, D., Herath S. , and Musiake K. , 2002: A hillslope-based hydrological model using catchment area and width functions. Hydrol. Sci. J., 47, 4965.

    • Search Google Scholar
    • Export Citation
  • Yang, D., Koike T. , and Tanizawa H. , 2004: Application of a distributed hydrological model and weather radar observations for flood management in the upper Tone River of Japan. Hydrol. Processes, 18, 31193132.

    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., Dickinson R. E. , Robock A. , and Ya Vinnikov K. , 1997: Validation of the snow submodel of the Biosphere–Atmosphere Transfer Scheme with Russian snow cover and meteorological observational data. J. Climate, 10, 353373.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., and Rodell M. , 2009: Forward-looking assimilation of MODIS-derived snow-covered area into a land surface model. J. Hydrometeor., 10, 130148.

    • Search Google Scholar
    • Export Citation
  • Zanotti, F., Endrizzi S. , Bertoldi G. , and Rigon R. , 2004: The GEOTOP snow module. Hydrol. Processes, 18, 36673679.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 807 286 18
PDF Downloads 555 148 13