Decadal Trends in Evaporation from Global Energy and Water Balances

Yongqiang Zhang * CSIRO Water for a Healthy Country National Research Flagship, CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by Yongqiang Zhang in
Current site
Google Scholar
PubMed
Close
,
Ray Leuning CSIRO Marine and Atmospheric Research, Canberra, Australian Capital Territory, Australia

Search for other papers by Ray Leuning in
Current site
Google Scholar
PubMed
Close
,
Francis H. S. Chiew * CSIRO Water for a Healthy Country National Research Flagship, CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by Francis H. S. Chiew in
Current site
Google Scholar
PubMed
Close
,
Enli Wang * CSIRO Water for a Healthy Country National Research Flagship, CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by Enli Wang in
Current site
Google Scholar
PubMed
Close
,
Lu Zhang * CSIRO Water for a Healthy Country National Research Flagship, CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by Lu Zhang in
Current site
Google Scholar
PubMed
Close
,
Changming Liu Institute of Geographic Sciences and Natural Resources Research, The Chinese Academy of Sciences, Beijing, China

Search for other papers by Changming Liu in
Current site
Google Scholar
PubMed
Close
,
Fubao Sun Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Fubao Sun in
Current site
Google Scholar
PubMed
Close
,
Murray C. Peel Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Murray C. Peel in
Current site
Google Scholar
PubMed
Close
,
Yanjun Shen ** Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, The Chinese Academy of Sciences, Shijiazhuang, China

Search for other papers by Yanjun Shen in
Current site
Google Scholar
PubMed
Close
, and
Martin Jung Max Planck Institute for Biogeochemistry, Jena, Germany

Search for other papers by Martin Jung in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Satellite and gridded meteorological data can be used to estimate evaporation (E) from land surfaces using simple diagnostic models. Two satellite datasets indicate a positive trend (first time derivative) in global available energy from 1983 to 2006, suggesting that positive trends in evaporation may occur in “wet” regions where energy supply limits evaporation. However, decadal trends in evaporation estimated from water balances of 110 wet catchments do not match trends in evaporation estimated using three alternative methods: 1) , a model-tree ensemble approach that uses statistical relationships between E measured across the global network of flux stations, meteorological drivers, and remotely sensed fraction of absorbed photosynthetically active radiation; 2) , a Budyko-style hydrometeorological model; and 3) , the Penman–Monteith energy-balance equation coupled with a simple biophysical model for surface conductance. Key model inputs for the estimation of and are remotely sensed radiation and gridded meteorological fields and it is concluded that these data are, as yet, not sufficiently accurate to explain trends in E for wet regions. This provides a significant challenge for satellite-based energy-balance methods. Trends in for 87 “dry” catchments are strongly correlated to trends in precipitation (R2 = 0.85). These trends were best captured by , which explicitly includes precipitation and available energy as model inputs.

Corresponding author address: Yongqiang Zhang, CSIRO Land and Water, P.O. Box 1666, Canberra ACT 2601, Australia. E-mail: yongqiang.zhang@csiro.au

Abstract

Satellite and gridded meteorological data can be used to estimate evaporation (E) from land surfaces using simple diagnostic models. Two satellite datasets indicate a positive trend (first time derivative) in global available energy from 1983 to 2006, suggesting that positive trends in evaporation may occur in “wet” regions where energy supply limits evaporation. However, decadal trends in evaporation estimated from water balances of 110 wet catchments do not match trends in evaporation estimated using three alternative methods: 1) , a model-tree ensemble approach that uses statistical relationships between E measured across the global network of flux stations, meteorological drivers, and remotely sensed fraction of absorbed photosynthetically active radiation; 2) , a Budyko-style hydrometeorological model; and 3) , the Penman–Monteith energy-balance equation coupled with a simple biophysical model for surface conductance. Key model inputs for the estimation of and are remotely sensed radiation and gridded meteorological fields and it is concluded that these data are, as yet, not sufficiently accurate to explain trends in E for wet regions. This provides a significant challenge for satellite-based energy-balance methods. Trends in for 87 “dry” catchments are strongly correlated to trends in precipitation (R2 = 0.85). These trends were best captured by , which explicitly includes precipitation and available energy as model inputs.

Corresponding author address: Yongqiang Zhang, CSIRO Land and Water, P.O. Box 1666, Canberra ACT 2601, Australia. E-mail: yongqiang.zhang@csiro.au
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Burn, D. H., and Hag Elnur M. A. , 2002: Detection of hydrologic trends and variability. J. Hydrol., 255, 107122.

  • Dai, A., Qian T. T. , Trenberth K. E. , and Milliman J. D. , 2009: Changes in continental freshwater discharge from 1948 to 2004. J. Climate, 22, 27732792.

    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., and Coauthors, 2009: The land–atmosphere water flux in the tropics. Global Change Biol., 15, 26942714.

  • Fu, B. P., 1981: On the calculation of the evaporation from land surface (in Chinese). Sci. Atmos. Sin., 5, 2331.

  • Ganguly, S., Schull M. A. , Samanta A. , Shabanov N. V. , Milesi C. , Nemani R. R. , Knyazikhin Y. , and Myneni R. B. , 2008a: Generating vegetation leaf area index earth system data record from multiple sensors. Part 1: Theory. Remote Sens. Environ., 112, 43334343.

    • Search Google Scholar
    • Export Citation
  • Ganguly, S., Samanta A. , Schull M. A. , Shabanov N. V. , Milesi C. , Nemani R. R. , Knyazikhin Y. , and Myneni R. B. , 2008b: Generating vegetation leaf area index earth system data record from multiple sensors. Part 2: Implementation, analysis and validation. Remote Sens. Environ., 112, 43184332.

    • Search Google Scholar
    • Export Citation
  • Gedney, N., Cox P. M. , Betts R. A. , Boucher O. , Huntingford C. , and Stott P. A. , 2006: Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 439, 835838.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., Stackhouse P. W. , Cox S. J. , Mikovitz J. C. , and Zhang T. P. , 2006: 22-year surface radiation budget data set. GEWEX News, Vol. 16, No. 4, International GEWEX Project Office, Silver Spring, MD, 12–13.

    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 8395.

  • Hutchinson, M. F., Ed., 2002: GEODATA 9 Second DEM (version 2.1): Data user guide. GeoScience Australia, 43 pp.

  • Isaac, P. R., Leuning R. , Hacker J. M. , Cleugh H. A. , Coppin P. A. , Denmead O. T. , and Raupach M. R. , 2004: Estimation of regional evapotranspiration by combining aircraft and ground-based measurements. Bound.-Layer Meteor., 110, 6998.

    • Search Google Scholar
    • Export Citation
  • Jung, M., Reichstein M. , and Bondeau A. , 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 20012013.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Le Moine, N., Andréassian V. , Perrin C. , and Michel C. , 2007: How can rainfall-runoff models handle intercatchment groundwater flows? Theoretical study based on 1040 French catchments. Water Resour. Res., 43, W06428, doi:10.1029/2006WR005608.

    • Search Google Scholar
    • Export Citation
  • Leuning, R., Zhang Y. Q. , Rajaud A. , Cleugh H. , and Tu K. , 2008: A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res., 44, W10419, doi:10.1029/2007WR006562.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., Dunne K. A. , and Vecchia A. V. , 2005: Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347350.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1964: Evaporation and environment: The state and movement of water in living organisms. 19th Symp. of the Society of Experimental Biology, Cambridge University Press, 205–234.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2011: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett., 38, L06402, doi:10.1029/2010gl046230.

    • Search Google Scholar
    • Export Citation
  • New, M., Hulme M. , and Jones P. , 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238.

    • Search Google Scholar
    • Export Citation
  • Oki, T., and Kanae S. , 2006: Global hydrological cycles and world water resources. Science, 313, 10681072.

  • Oki, T., Nishimura T. , and Dirmeyer P. , 1999: Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). J. Meteor. Soc. Japan, 77, 235255.

    • Search Google Scholar
    • Export Citation
  • Peel, M. C., McMahon T. A. , and Finlayson B. L. , 2010: Vegetation impact on mean annual evapotranspiration at a global catchment scale. Water Resour. Res., 46, W09508, doi:10.1029/2009WR008233.

    • Search Google Scholar
    • Export Citation
  • Piao, S. L., Friedlingstein P. , Ciais P. , de Noblet-Ducoudre N. , Labat D. , and Zaehle S. , 2007: Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl. Acad. Sci. USA, 104, 15 24215 247.

    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., and Taylor R. J. , 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 8192.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., and Farquhar G. D. , 2002: The cause of decreased pan evaporation over the past 50 years. Science, 298, 14101411.

  • Rudolf, B., and Schneider U. , 2004: Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations. Proc. Second Workshop of the Int. Precipitation Working Group, Monterey, CA, IPWG, 231–247.

    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389.

  • Teuling, A. J., and Coauthors, 2009: A regional perspective on trends in continental evaporation. Geophys. Res. Lett., 36, L02404, doi:10.1029/2008GL036584.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Smith L. , Qian T. T. , Dai A. , and Fasullo J. , 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769.

    • Search Google Scholar
    • Export Citation
  • Vorosmarty, C. J., Fekete B. M. , Meybeck M. , and Lammers R. B. , 2000: Global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages. Global Biogeochem. Cycles, 14, 599621.

    • Search Google Scholar
    • Export Citation
  • Vorosmarty, C. J., Meybeck M. , Fekete B. , Sharma K. , Green P. , and Syvitski J. P. M. , 2003: Anthropogenic sediment retention: Major global impact from registered river impoundments. Global Planet. Change, 39, 169190.

    • Search Google Scholar
    • Export Citation
  • Wild, M., and Coauthors, 2005: From dimming to brightening: Decadal changes in solar radiation at Earth’s surface. Science, 308, 847850.

    • Search Google Scholar
    • Export Citation
  • Wild, M., Grieser J. , and Schaer C. , 2008: Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys. Res. Lett., 35, L17706, doi:10.1029/2008GL034842.

    • Search Google Scholar
    • Export Citation
  • Yang, D. W., Sun F. B. , Liu Z. Y. , Cong Z. T. , Ni G. H. , and Lei Z. D. , 2007: Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of China using the Budyko hypothesis. Water Resour. Res., 43, W04426, doi:10.1029/2006WR005224.

    • Search Google Scholar
    • Export Citation
  • Yue, S., Pilon P. , Phinney B. , and Cavadias G. , 2002: The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Processes, 16, 18071829.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., Dawes W. R. , and Walker G. R. , 2001: Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res., 37, 701708.

    • Search Google Scholar
    • Export Citation
  • Zhang, X. B., Zwiers F. W. , Hegerl G. C. , Lambert F. H. , Gillett N. P. , Solomon S. , Stott P. A. , and Nozawa T. , 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461465.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. C., Rossow W. B. , Lacis A. A. , Oinas V. , and Mishchenko M. I. , 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Q., Leuning R. , Hutley L. B. , Beringer J. , McHugh I. , and Walker J. P. , 2010: Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution. Water Resour. Res., 46, W05512, doi:10.1029/2009WR008716.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 926 209 19
PDF Downloads 627 161 13