Incorporating Anthropogenic Water Regulation Modules into a Land Surface Model

Yadu Pokhrel * Institute of Industrial Science, University of Tokyo, Tokyo, Japan

Search for other papers by Yadu Pokhrel in
Current site
Google Scholar
PubMed
Close
,
Naota Hanasaki National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Naota Hanasaki in
Current site
Google Scholar
PubMed
Close
,
Sujan Koirala Department of Mechanical and Environmental Informatics, Tokyo Institute of Technology, Tokyo, Japan

Search for other papers by Sujan Koirala in
Current site
Google Scholar
PubMed
Close
,
Jaeil Cho Kasuya Research Forest, Kyushu University, Fukuoka, Japan

Search for other papers by Jaeil Cho in
Current site
Google Scholar
PubMed
Close
,
Pat J.-F. Yeh * Institute of Industrial Science, University of Tokyo, Tokyo, Japan

Search for other papers by Pat J.-F. Yeh in
Current site
Google Scholar
PubMed
Close
,
Hyungjun Kim Center for Hydrologic Modeling, University of California, Irvine, Irvine, California
* Institute of Industrial Science, University of Tokyo, Tokyo, Japan

Search for other papers by Hyungjun Kim in
Current site
Google Scholar
PubMed
Close
,
Shinjiro Kanae Department of Mechanical and Environmental Informatics, Tokyo Institute of Technology, Tokyo, Japan

Search for other papers by Shinjiro Kanae in
Current site
Google Scholar
PubMed
Close
, and
Taikan Oki * Institute of Industrial Science, University of Tokyo, Tokyo, Japan

Search for other papers by Taikan Oki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Anthropogenic activities have been significantly perturbing global freshwater flows and groundwater reserves. Despite numerous advances in the development of land surface models (LSMs) and global terrestrial hydrological models (GHMs), relatively few studies have attempted to simulate the impacts of anthropogenic activities on the terrestrial water cycle using the framework of LSMs. From the comparison of simulated terrestrial water storage with the Gravity Recovery and Climate Experiment (GRACE) satellite observations it is found that a process-based LSM, the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO), outperforms the bucket-model-based GHM called H08 in simulating hydrologic variables, particularly in water-limited regions. Therefore, the water regulation modules of H08 are incorporated into MATSIRO. Further, a new irrigation scheme based on the soil moisture deficit is developed. Incorporation of anthropogenic water regulation modules significantly improves river discharge simulation in the heavily regulated global river basins. Simulated irrigation water withdrawal for the year 2000 (2462 km3 yr−1) agrees well with the estimates provided by the Food and Agriculture Organization (FAO). Results indicate that irrigation changes surface energy balance, causing a maximum increase of ~50 W m−2 in latent heat flux averaged over June–August. Moreover, unsustainable anthropogenic water use in 2000 is estimated to be ~450 km3 yr−1, which corresponds well with documented records of groundwater overdraft, representing an encouraging improvement over the previous modeling studies. Globally, unsustainable water use accounts for ~40% of blue water used for irrigation. The representation of anthropogenic activities in MATSIRO makes the model a suitable tool for assessing potential anthropogenic impacts on global water resources and hydrology.

Corresponding author address: Yadu Pokhrel, Institute of Industrial Science, 4-6-1 Meguro, Komaba, Tokyo 153-8505, Japan. E-mail: pokhrel@rainbow.iis.u-tokyo.ac.jp

This article is included in the Hydrology in Earth System Science and Society (HESSS) special collection.

Abstract

Anthropogenic activities have been significantly perturbing global freshwater flows and groundwater reserves. Despite numerous advances in the development of land surface models (LSMs) and global terrestrial hydrological models (GHMs), relatively few studies have attempted to simulate the impacts of anthropogenic activities on the terrestrial water cycle using the framework of LSMs. From the comparison of simulated terrestrial water storage with the Gravity Recovery and Climate Experiment (GRACE) satellite observations it is found that a process-based LSM, the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO), outperforms the bucket-model-based GHM called H08 in simulating hydrologic variables, particularly in water-limited regions. Therefore, the water regulation modules of H08 are incorporated into MATSIRO. Further, a new irrigation scheme based on the soil moisture deficit is developed. Incorporation of anthropogenic water regulation modules significantly improves river discharge simulation in the heavily regulated global river basins. Simulated irrigation water withdrawal for the year 2000 (2462 km3 yr−1) agrees well with the estimates provided by the Food and Agriculture Organization (FAO). Results indicate that irrigation changes surface energy balance, causing a maximum increase of ~50 W m−2 in latent heat flux averaged over June–August. Moreover, unsustainable anthropogenic water use in 2000 is estimated to be ~450 km3 yr−1, which corresponds well with documented records of groundwater overdraft, representing an encouraging improvement over the previous modeling studies. Globally, unsustainable water use accounts for ~40% of blue water used for irrigation. The representation of anthropogenic activities in MATSIRO makes the model a suitable tool for assessing potential anthropogenic impacts on global water resources and hydrology.

Corresponding author address: Yadu Pokhrel, Institute of Industrial Science, 4-6-1 Meguro, Komaba, Tokyo 153-8505, Japan. E-mail: pokhrel@rainbow.iis.u-tokyo.ac.jp

This article is included in the Hydrology in Earth System Science and Society (HESSS) special collection.

Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Alcamo, J., Döll P. , Henrichs T. , Kaspar F. , Lehner B. , Rösch T. , and Siebert S. , 2003: Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J., 48, 317337.

    • Search Google Scholar
    • Export Citation
  • Allen, R. G., Pereira L. S. , Raes D. , and Smith M. , 1998: Crop evapotranspiration—Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp.

    • Search Google Scholar
    • Export Citation
  • Beltrán, J., and Koo-Oshima S. , 2006: Water desalination for agricultural applications. FAO Land and Water Discussion Paper 5, 48 pp.

  • Beven, K. J., and Kirkby M. J. , 1979: A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull., 24, 4369.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., Myhre G. , and Myhre A. , 2004: Direct human influence of irrigation on atmospheric water vapour and climate. Climate Dyn., 22, 597603.

    • Search Google Scholar
    • Export Citation
  • Cai, X., and Rosegrant M. W. , 2002: Global water demand and supply projections, Part 1: A modeling approach. Water Int., 27, 159169.

  • Chambers, D. P., 2007: Converting Release-04 gravity coefficients into maps of equivalent water thickness. Jet Propulsion Laboratory Tech. Rep., 9 pp. [Available online at http://grace.jpl.nasa.gov/files/GRACE-dpc200711_RL04.pdf.]

    • Search Google Scholar
    • Export Citation
  • Chen, M., Xie P. , Janowiak J. E. , and Arkin P. A. , 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266.

    • Search Google Scholar
    • Export Citation
  • Chen, M., Shi W. , Xie P. , Silva V. B. S. , Kousky V. E. , Higgins R. W. , and Janowiak J. E. , 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chen, T. H., and Coauthors, 1997: Cabauw experimental results from the project for intercomparison of land-surface parameterization schemes. J. Climate, 10, 11941215.

    • Search Google Scholar
    • Export Citation
  • Collatz, G., Ball J. T. , Grivet C. , and Berry J. A. , 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteor., 54, 107136.

    • Search Google Scholar
    • Export Citation
  • Cśaki, C., and de Haan C. , 2003: Reaching the Rural Poor: A Renewed Strategy for Rural Development. World Bank Publications, 204 pp.

  • Decharme, B., Alkama R. , Douville H. , Becker M. , and Cazenave A. , 2010: Global evaluation of the ISBA-TRIP continental hydrological system. Part II: Uncertainties in river routing simulation related to flow velocity and groundwater storage. J. Hydrometeor., 11, 601617.

    • Search Google Scholar
    • Export Citation
  • Desborough, C., 1999: Surface energy balance complexity in GCM land surface models. Climate Dyn., 15, 389403.

  • de Rosnay, P., Polcher J. , Laval K. , and Sabre M. , 2003: Integrated parameterization of irrigation in the land surface model ORCHIDEE. Validation over Indian Peninsula. Geophys. Res. Lett., 30, 1986, doi:10.1029/2003GL018024.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Gao X. , Zhao M. , Guo Z. , Oki T. , and Hanasaki N. , 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811397.

    • Search Google Scholar
    • Export Citation
  • Döll, P., and Siebert S. , 2002: Global modeling of irrigation water requirements. Water Resour. Res., 38, 1037, doi:10.1029/2001WR000355.

    • Search Google Scholar
    • Export Citation
  • Döll, P., Fiedler K. , and Zhang J. , 2009: Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci., 13, 24132432.

    • Search Google Scholar
    • Export Citation
  • Ducoudré, N. I., Laval K. , and Perrier A. , 1993: SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land–atmosphere interface within the LMD atmospheric general circulation model. J. Climate, 6, 248273.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., Miguez-Macho G. , Weaver C. P. , Walko R. , and Robock A. , 2007: Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. J. Geophys. Res., 112, D10125, doi:10.1029/2006JD008111.

    • Search Google Scholar
    • Export Citation
  • FAO, cited 2007: AQUASTAT. [Available online at http://www.fao.org/nr/water/aquastat/main/index.stm.]

  • Freydank, K., and Siebert S. , 2008: Towards mapping the extent of irrigation in the last century: Time series of irrigated area per country. Frankfurt Hydrology Paper-08, 46 pp.

    • Search Google Scholar
    • Export Citation
  • Giordano, M., 2009: Global groundwater? Issues and solutions. Annu. Rev. Environ. Resour., 34, 153178.

  • Haddeland, I., Lettenmaier D. P. , and Skaugen T. , 2006a: Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins. J. Hydrol., 324, 210223.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., Skaugen T. , and Lettenmaier D. P. , 2006b: Anthropogenic impacts on continental surface water fluxes. Geophys. Res. Lett., 33, L08406, doi:10.1029/2006GL026047.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., and Coauthors, 2011: Multimodel estimate of the global terrestrial water balance: Setup and first results. J. Hydrometeor., 12, 869884.

    • Search Google Scholar
    • Export Citation
  • Hanasaki, N., Kanae S. , and Oki T. , 2006: A reservoir operation scheme for global river routing models. J. Hydrol., 327, 2241.

  • Hanasaki, N., Kanae S. , Oki T. , Masuda K. , Motoya K. , Shirakawa N. , Shen Y. , and Tanaka K. , 2008a: An integrated model for the assessment of global water resources—Part 1: Model description and input meteorological forcing. Hydrol. Earth Syst. Sci., 12, 10071025.

    • Search Google Scholar
    • Export Citation
  • Hanasaki, N., Kanae S. , Oki T. , Masuda K. , Motoya K. , Shirakawa N. , Shen Y. , and Tanaka K. , 2008b: An integrated model for the assessment of global water resources—Part 2: Applications and assessments. Hydrol. Earth Syst. Sci., 12, 10271037.

    • Search Google Scholar
    • Export Citation
  • Hanasaki, N., Inuzuka T. , Kanae S. , and Oki T. , 2010: An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol., 384, 232244.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., and Emori S. , Eds., 2004: K-1 coupled model (MIROC) description. K-1 Tech. Rep. 1, 34 pp. [Available online at http://www.ccsr.u-tokyo.ac.jp/~agcmadm/.]

    • Search Google Scholar
    • Export Citation
  • Helkowski, J. H., 2004: Global patterns of soil moisture and runoff: An assessment of water availability. M.S. thesis, University of Wisconsin—Madison, 51 pp.

    • Search Google Scholar
    • Export Citation
  • Hirabayashi, Y., Kanae S. , Struthers I. , and Oki T. , 2005: A 100-year (1901–2000) global retrospective estimation of the terrestrial water cycle. J. Geophys. Res., 110, D19101, doi:10.1029/2004JD005492.

    • Search Google Scholar
    • Export Citation
  • ICOLD, 1998: World Register of Dams. International Commission on Large Dams.

  • ICOLD, 2003: World Register of Dams. International Commission on Large Dams.

  • Jackson, R., Carpenter S. , Dahm, C. , McKnight, D. , Naiman, R. , Postel, and S. , Running S. , 2001: Water in a changing world. Ecol. Appl., 11, 10271045.

    • Search Google Scholar
    • Export Citation
  • Kim, H., Yeh P. J.-F. , Oki T. , and Kanae S. , 2009: Role of rivers in the seasonal variations of terrestrial water storage over global basins. Geophys. Res. Lett., 36, L17402, doi:10.1029/2009GL039006.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Milly P. C. D. , 1997: The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. J. Climate, 10, 15781591.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140.

  • Krysanova, V., Müller-Wohlfeil D.-I. , and Becker A. , 1998: Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecol. Modell., 106, 261289.

    • Search Google Scholar
    • Export Citation
  • Leff, B., Ramankutty N. , and Foley J. A. , 2004: Geographic distribution of major crops across the world. Global Biogeochem. Cycles, 18, GB1009, doi:10.1029/2003GB002108.

    • Search Google Scholar
    • Export Citation
  • Lobell, D., Bala G. , Mirin A. , Phillips T. , Maxwell R. , and Rotman D. , 2009: Regional differences in the influence of irrigation on climate. J. Climate, 22, 22482255.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and ocean circulation: I. The atmospheric circulation and the hydrology of the earth’s surface. Mon. Wea. Rev., 97, 739774.

    • Search Google Scholar
    • Export Citation
  • Ngo-Duc, T., Polcher J. , and Laval K. , 2005: A 53-year forcing data set for land surface models. J. Geophys. Res., 110, D06116, doi:10.1029/2004JD005434.

    • Search Google Scholar
    • Export Citation
  • Nilsson, C., Reidy C. A. , Dynesius M. , and Revenga C. , 2005: Fragmentation and flow regulation of the world’s large river systems. Science, 308, 405408.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Yang Z.-L. , Dickinson R. E. , Gulden L. E. , and Su H. , 2007: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res., 112, D07103, doi:10.1029/2006JD007522.

    • Search Google Scholar
    • Export Citation
  • Oki, T., and Sud Y. C. , 1998: Design of Total Runoff Integrating Pathways (TRIP)—A global river channel network. Earth Interact., 2, 137.

    • Search Google Scholar
    • Export Citation
  • Oki, T., and Kanae S. , 2006: Global hydrological cycles and world water resources. Science, 313, 10681072.

  • Oki, T., Nishimura T. , and Dirmeyer P. , 1999: Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). J. Meteor. Soc. Japan, 77, 235255.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Ozdogan, M., Rodell M. , Beaudoing H. K. , and Toll D. L. , 2010: Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. J. Hydrometeor., 11, 171184.

    • Search Google Scholar
    • Export Citation
  • Puma, M. J., and Cook B. I. , 2010: Effects of irrigation on global climate during the 20th century. J. Geophys. Res., 115, D16120, doi:10.1029/2010JD014122.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., and Foley J. A. , 1999: Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles, 13, 9971027.

    • Search Google Scholar
    • Export Citation
  • Robock, A., Vinnikov K. , Schlosser C. , Speranskaya N. , and Xue Y. , 1995: Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models. J. Climate, 8, 1535.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., Velicogna I. , and Famiglietti J. S. , 2009: Satellite-based estimates of groundwater depletion in India. Nature, 460, 9991002.

    • Search Google Scholar
    • Export Citation
  • Rost, S., Gerten D. , Bondeau A. , Lucht W. , Rohwer J. , and Schaphoff S. , 2008: Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res., 44, W09405, doi:10.1029/2007WR006331.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., and Schneider U. , 2005: Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations. Proc. Second Workshop of the Int. Precipitation Working Group, Monterey, CA, IPWG, 231–247.

    • Search Google Scholar
    • Export Citation
  • Sacks, W. J., Cook B. I. , Buenning N. , Levis S. , and Helkowski J. H. , 2009: Effects of global irrigation on the near-surface climate. Climate Dyn., 33, 159175.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1997: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275, 502509.

    • Search Google Scholar
    • Export Citation
  • Shah, T., Molden D. , Sakthivadivel R. , and Seckler D. , 2000: The global groundwater situation: Overview of opportunities and challenges. International Water Management Institute Rep., 21 pp.

    • Search Google Scholar
    • Export Citation
  • Shiklomanov, I. A., 2000: Appraisal and assessment of world water resources. Water Int., 25, 1132.

  • Shiklomanov, I. A., and Rodda J. C. , Eds., 2003: World Water Resources at the Beginning of the 21st Century. International Hydrology Series, Cambridge University Press, 435 pp.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Mintz Y. , 1982: Influence of land-surface evapotranspiration on the Earth’s climate. Science, 215, 14981501.

  • Siebert, S., Döll P. , Feick S. , Hoogeveen J. , and Frenken K. , cited 2007: Global Map of Irrigation Areas version 4.0.1. [Available online at http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm.]

    • Search Google Scholar
    • Export Citation
  • Siebert, S., Burke J. , Faures J. M. , Frenken K. , Hoogeveen J. , Döll P. , and Portmann F. T. , 2010: Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci., 14, 18631880.

    • Search Google Scholar
    • Export Citation
  • Stieglitz, M., Rind D. , Famiglietti J. , and Rosenzweig C. , 1997: An efficient approach to modeling the topographic control of surface hydrology for regional and global climate modeling. J. Climate, 10, 118137.

    • Search Google Scholar
    • Export Citation
  • Takata, K., Emori S. , and Watanabe T. , 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38, 209222.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., Oki T. , Kanae S. , and Hu H. , 2007: The influence of precipitation variability and partial irrigation within grid cells on a hydrological simulation. J. Hydrometeor., 8, 499512.

    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., Bettadpur S. , Ries J. C. , Thompson P. F. , and Watkins M. M. , 2004: GRACE measurements of mass variability in the Earth system. Science, 305, 503505.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., and Sahagian D. , 2000: Anthropogenic disturbance of the terrestrial water cycle. Bioscience, 50, 753765.

  • Vörösmarty, C. J., Green P. , Salisbury J. , and Lammers R. B. , 2000: Global water resources: Vulnerability from climate change and population growth. Science, 289, 284288.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., Lévêque C. , and Revenga C. , 2005: Fresh water. Ecosystems and Human Well-Being: Current State and Trends, R. M. Hassan, R. Scholes, and N. Ash, Eds., Millennium Ecosystem Assessment Series, Vol. 1, Island Press, 165–208.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., and Coauthors, 2010: Global threats to human water security and river biodiversity. Nature, 467, 555561.

  • Wada, Y., van Beek L. P. H. , van Kempen C. M. , Reckman J. W. T. M. , Vasak S. , and Bierkens M. F. P. , 2010: Global depletion of groundwater resources. Geophys. Res. Lett., 37, L20402, doi:10.1029/2010GL044571.

    • Search Google Scholar
    • Export Citation
  • Watanabe, T., 1994: Bulk parameterization for a vegetated surface and its application to a simulation of nocturnal drainage flow. Bound.-Layer Meteor., 70, 1335.

    • Search Google Scholar
    • Export Citation
  • Wisser, D., Fekete B. M. , Vörösmarty C. J. , and Schumann A. H. , 2010a: Reconstructing 20th century global hydrography: A contribution to the Global Terrestrial Network—Hydrology (GTN-H). Hydrol. Earth Syst. Sci., 14, 124.

    • Search Google Scholar
    • Export Citation
  • Wisser, D., Frolking S. , Douglas E. M. , Fekete B. M. , Schumann A. H. , and Vörösmarty C. J. , 2010b: The significance of local water resources captured in small reservoirs for crop production—A global-scale analysis. J. Hydrol., 384, 264275.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Yeh, P. J.-F., and Eltahir E. A. B. , 2005: Representation of water table dynamics in a land surface scheme. Part I: Model development. J. Climate, 18, 18611880.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2790 989 57
PDF Downloads 1406 414 29