Abstract
Using 13 yr of data from the Tropical Rainfall Measuring Mission (TRMM) satellite, a regional climatology of monsoonal precipitation is created for portions of the southwest United States. The climatology created using precipitation features defined from the TRMM precipitation radar (PR) shows that the population of features includes a large number of small, weak features that do not produce much rain and are very shallow. A lesser percentage of large, stronger features contributes most of the region’s rainfall. Dividing the features into categories based on the median values of volumetric rainfall and maximum height of the 30-dBZ echo is a useful way to visualize the population of features, and the categories selected reflect the life cycle of monsoonal convection. An examination of the top rain-producing features at different elevations reveals that extreme features tend to occur at lower elevations later in the day. A comparison with the region studied in the North American Monsoon Experiment (NAME) shows that similar diurnal patterns occur in the Sierra Madre Occidental region of Mexico. The population of precipitation features in both regions is similar, with the NAME region producing slightly larger precipitation systems on average than the southwest United States. Both regions on occasion demonstrate the pattern of convection initiating at high elevations and moving downslope while growing upscale through the afternoon and evening; however, there are also days on which convection remains over the high terrain.