Predictability of Evapotranspiration Patterns Using Remotely Sensed Vegetation Dynamics during the North American Monsoon

Qiuhong Tang Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Qiuhong Tang in
Current site
Google Scholar
PubMed
Close
,
Enrique R. Vivoni School of Earth and Space Exploration, and School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona

Search for other papers by Enrique R. Vivoni in
Current site
Google Scholar
PubMed
Close
,
Francisco Muñoz-Arriola Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Francisco Muñoz-Arriola in
Current site
Google Scholar
PubMed
Close
, and
Dennis P. Lettenmaier Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Dennis P. Lettenmaier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The links between vegetation, evapotranspiration (ET), and soil moisture (SM) are prominent in western Mexico—a region characterized by an abrupt increase in rainfall and ecosystem greenup during the North American monsoon (NAM). Most regional-scale land surface models use climatological vegetation and are therefore unable to capture fully the spatiotemporal changes in these linkages. Interannually varying and climatological leaf area index (LAI) were prescribed, both inferred from the space-borne Moderate Resolution Imaging Spectroradiometer (MODIS), as the source of vegetation parameter inputs to the Variable Infiltration Capacity (VIC) model applied over the NAM region for 2001–08. Results at two eddy covariance tower sites for three summer periods were compared and evaluated. Results show that both vegetation greening onset and dormancy dates vary substantially from year to year with a range of more than half a month. The model using climatological LAI tends to predict lower (higher) ET than the model using observed LAI when vegetation greening occurs earlier (later) than the mean greening date. These discrepancies were especially large during approximately two weeks at the beginning of the monsoon. The effect of LAI on ET estimates was about 10% in the Sierra Madre Occidental and 30% in the continental interior. VIC-estimated ET based on interannually varying LAI had high interannual variability at the greening onset and dormancy periods corresponding to the vegetation dynamics. The greening onset date was highly related to ET early in the monsoon season, indicating the potential usefulness of LAI anomalies for predicting early season ET.

Current affiliation: Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.

Current affiliation: Division of Climate, Atmospheric Sciences, and Physical Oceanography, University of California, San Diego, La Jolla, California.

Corresponding author address: Dennis P. Lettenmaier, Department of Civil and Environmental Engineering, Box 352700, University of Washington, Seattle, WA 98195. E-mail: dennisl@u.washington.edu

Abstract

The links between vegetation, evapotranspiration (ET), and soil moisture (SM) are prominent in western Mexico—a region characterized by an abrupt increase in rainfall and ecosystem greenup during the North American monsoon (NAM). Most regional-scale land surface models use climatological vegetation and are therefore unable to capture fully the spatiotemporal changes in these linkages. Interannually varying and climatological leaf area index (LAI) were prescribed, both inferred from the space-borne Moderate Resolution Imaging Spectroradiometer (MODIS), as the source of vegetation parameter inputs to the Variable Infiltration Capacity (VIC) model applied over the NAM region for 2001–08. Results at two eddy covariance tower sites for three summer periods were compared and evaluated. Results show that both vegetation greening onset and dormancy dates vary substantially from year to year with a range of more than half a month. The model using climatological LAI tends to predict lower (higher) ET than the model using observed LAI when vegetation greening occurs earlier (later) than the mean greening date. These discrepancies were especially large during approximately two weeks at the beginning of the monsoon. The effect of LAI on ET estimates was about 10% in the Sierra Madre Occidental and 30% in the continental interior. VIC-estimated ET based on interannually varying LAI had high interannual variability at the greening onset and dormancy periods corresponding to the vegetation dynamics. The greening onset date was highly related to ET early in the monsoon season, indicating the potential usefulness of LAI anomalies for predicting early season ET.

Current affiliation: Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.

Current affiliation: Division of Climate, Atmospheric Sciences, and Physical Oceanography, University of California, San Diego, La Jolla, California.

Corresponding author address: Dennis P. Lettenmaier, Department of Civil and Environmental Engineering, Box 352700, University of Washington, Seattle, WA 98195. E-mail: dennisl@u.washington.edu
Save
  • Abuelgasim, A. A., Fernandes R. A. , and Leblanc S. G. , 2006: Evaluation of national and global LAI products derived from optical remote sensing instruments over Canada. IEEE Trans. Geosci. Remote Sens., 44, 18721884.

    • Search Google Scholar
    • Export Citation
  • Adams, D. K., and Comrie A. C. , 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213.

  • Adegoke, J. O., and Carleton A. M. , 2002: Relations between soil moisture and satellite vegetation indices in the U.S. corn belt. J. Hydrometeor., 3, 395405.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., Kanamura H. , and Roads J. O. , 2004: The summertime atmospheric hydrologic cycle over the southwestern United States. J. Hydrometeor., 5, 679692.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., Nigam S. , and Berbery E. H. , 1998: Evolution of the North American monsoon system. J. Climate, 11, 22382257.

  • Berbery, E. H., 2001: Mesoscale moisture analysis of the North American monsoon. J. Climate, 14, 121137.

  • Castro, C. L., Pielke R. A. , and Adegoke J. O. , 2007: Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part I: Model climatology (1950–2002). J. Climate, 20, 38443865.

    • Search Google Scholar
    • Export Citation
  • Dominguez, F., Kumar P. , and Vivoni E. R. , 2008: Precipitation recycling variability and ecoclimatological stability—A study using NARR data. Part II: North American monsoon region. J. Climate, 21, 51875203.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., Maddox R. A. , Howard K. , and Reyes S. , 1993: The Mexican monsoon. J. Climate, 6, 16651677.

  • Duchemin, B., Berthelot B. , Dedieu G. , Leroy M. , and Maisongrande P. , 2002: Normalisation of directional effects in 10-day global syntheses derived from VEGETATION/SPOT: II. Validation of an operational method on actual data sets. Remote Sens. Environ., 81, 101113.

    • Search Google Scholar
    • Export Citation
  • Englehart, P. J., and Douglas A. V. , 2001: The role of eastern Pacific tropical storms in the rainfall climatology of western Mexico. Int. J. Climatol., 21, 13571370.

    • Search Google Scholar
    • Export Citation
  • Fensholt, R., Sandholt I. , and Rasmussen M. S. , 2004: Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ., 91, 490507.

    • Search Google Scholar
    • Export Citation
  • Forzieri, G., Castelli F. , and Vivoni E. R. , 2011: Vegetation dynamics within the North American Monsoon Region. J. Climate, 24, 17631783.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., Sulla-Menashe D. , Tan B. , Schneider A. , Ramankutty N. , Sibley A. , and Huang X. , 2010: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ., 114, 168182.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Dirmeyer P. A. , Guo Z. , and Zhao M. , 2008: Sensitivity of land surface simulations to the treatment of vegetation properties and the implications for seasonal climate prediction. J. Hydrometeor., 9, 348366.

    • Search Google Scholar
    • Export Citation
  • Garrigues, S., and Coauthors, 2008: Validation and intercomparison of global Leaf Area Index products derived from remote sensing data. J. Geophys. Res., 113, G02028, doi:10.1029/2007JG000635.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., Vivoni E. R. , Watts C. J. , and Rodríguez J. C. , 2007: Submesoscale spatiotemporal variability of North American monsoon rainfall over complex terrain. J. Climate, 20, 17511773.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., Shuttleworth W. J. , and Yang Z. L. , 2002: Sensitivity of the modeled North American monsoon regional climate to convective parameterization. Mon. Wea. Rev., 130, 12821298.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., Jimenez A. , Watts C. J. , Garatuza-Payan J. , and Shuttleworth W. J. , 2004: Analysis of 2002 and 2003 warm season precipitation from the North American Monsoon Experiment (NAME) Event Rain Gauge Network (NERN). Mon. Wea. Rev., 132, 29382953.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., Brito-Castillo L. , and Shuttleworth W. J. , 2006: Hydroclimatology of the North American monsoon region in northwest Mexico. J. Hydrol., 316, 5370.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., 2004: An index of interannual precipitation variability in the core of the North American monsoon region. J. Climate, 17, 44734480.

    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., DeFries R. S. , Townshend J. R. G. , and Sohlberg R. , 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21, 13311364.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and Shi W. , 2001: Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system. J. Climate, 14, 403417.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Yao Y. , and Wang X. L. , 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10, 26002622.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Chen Y. , and Douglas A. V. , 1999: Interannual variability of the North American warm season precipitation regime. J. Climate, 12, 653680.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Knote, C., Bonafe G. , and Giuseppe F. D. , 2009: Leaf area index specification for use in mesoscale weather prediction systems. Mon. Wea. Rev., 137, 35353550.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558570.

  • Kurc, S. A., and Small E. E. , 2004: Dynamics of evapotranspiration in semiarid grassland and shrubland ecosystems during the summer monsoon season, central New Mexico. Water Resour. Res., 40, W09305, doi:10.1029/2004WR003068.

    • Search Google Scholar
    • Export Citation
  • Kurkowski, N. P., Stensrud D. J. , and Baldwin M. E. , 2003: Assessment of implementing satellite-derived land cover data in the Eta Model. Wea. Forecasting, 18, 404416.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and Chase T. N. , 2007: Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J. Geophys. Res., 112, G01023, doi:10.1029/2006JG000168.

    • Search Google Scholar
    • Export Citation
  • Li, J., Gao X. , Maddox R. A. , and Sorooshian S. , 2004: Model study of evolution and diurnal variations of rainfall in the North American monsoon during June and July 2002. Mon. Wea. Rev., 132, 28952915.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. , and Burges S. J. , 1994: A simple hydrologically based model of land surface and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428.

    • Search Google Scholar
    • Export Citation
  • Lizárraga-Celaya, C., Watts C. J. , Rodríguez J. C. , Garatuza-Payan J. , Scott R. L. , and Saiz-Hernandez J. , 2010: Spatio-temporal variations in surface characteristics over the North American Monsoon region. J. Arid Environ., 74, 540548.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., Lakshmi V. , and Small E. E. , 2005: The effects of satellite-derived vegetation cover variability on simulated land–atmosphere interactions in the NAMS. J. Climate, 18, 2140.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Wood A. W. , Adam J. C. , Lettenmaier D. P. , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251.

    • Search Google Scholar
    • Export Citation
  • Méndez-Barroso, L. A., and Vivoni E. R. , 2010: Observed shifts in land surface conditions during the North American Monsoon: Implications for a vegetation–rainfall feedback mechanism. J. Arid Environ., 74, 549555.

    • Search Google Scholar
    • Export Citation
  • Méndez-Barroso, L. A., Vivoni E. R. , Watts C. J. , and Rodríguez J. C. , 2009: Seasonal and interannual relations between precipitation, surface soil moisture and vegetation dynamics in the North American monsoon region. J. Hydrol., 377, 5970.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Moulin, S., Kergoat L. , Viovy N. , and Dedieu G. , 1997: Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. J. Climate, 10, 11541170.

    • Search Google Scholar
    • Export Citation
  • Pérez-Ruiz, E. R., Garatuza-Payan J. , Watts C. J. , Rodríguez J. C. , Yepez E. A. , and Scott R. L. , 2010: Carbon dioxide and water vapour exchange in a tropical dry forest as influenced by the North American Monsoon System (NAMS). J. Arid Environ., 74, 556563.

    • Search Google Scholar
    • Export Citation
  • Pisek, J., and Chen J. M. , 2007: Comparison and validation of MODIS and VEGETATION global LAI products over four BigFoot sites in North America. Remote Sens. Environ., 109, 8194.

    • Search Google Scholar
    • Export Citation
  • Quintas, I., 2000: ERIC II: Documentación de la base de datos climatológica y del programa extractor (ERIC II: Documentation of the climatologic database and data extraction program). IMTA Tech. Rep., 54 pp.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85, 381394.

  • Sakai, R. K., Fitzjarrald D. R. , and Moore K. E. , 1997: Detecting leaf area and surface resistance during transition seasons. Agric. For. Meteor., 84, 273284.

    • Search Google Scholar
    • Export Citation
  • Salinas-Zavala, C. A., Douglas A. V. , and Diaz H. F. , 2002: Interannual variability of NDVI in northwest Mexico. Associated climatic mechanisms and ecological implications. Remote Sens. Environ., 82, 417430.

    • Search Google Scholar
    • Export Citation
  • Scott, R. L., Huxman T. E. , Cable W. L. , and Emmerich W. E. , 2006: Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihuahuan Desert shrubland. Hydrol. Processes, 20, 32273243.

    • Search Google Scholar
    • Export Citation
  • Shepard, D. S., 1984: Computer mapping: The SYMAP interpolation algorithm. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, Eds., D. Reidel Publishing Company, 133–145.

    • Search Google Scholar
    • Export Citation
  • Sheppard, P. R., Comrie A. C. , Packin G. D. , Angersbach K. , and Hughes M. K. , 2002: The climate of the US Southwest. Climate Res., 21, 219238.

    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 1993: Evaporation. Handbook of Hydrology, D. R. Maidment, Ed., McGraw-Hill, 4.1–4.53.

  • Stensrud, D. J., Gall R. L. , Mullen S. L. , and Howard K. W. , 1995: Model climatology of the Mexican monsoon. J. Climate, 8, 17751794.

    • Search Google Scholar
    • Export Citation
  • Verdin, K. L., and Verdin J. P. , 1999: A topological system for delineation and codification of the Earth’s river basins. J. Hydrol., 218, 112.

    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., Moreno H. A. , Mascaro G. , Rodríguez J. C. , Watts C. J. , Garatuza-Payan J. , and Scott R. L. , 2008: Observed relation between evapotranspiration and soil moisture in the North American monsoon region. Geophys. Res. Lett., 35, L22403, doi:10.1029/2008GL036001.

    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., Rodríguez J. C. , and Watts C. J. , 2010a: On the spatiotemporal variability of soil moisture and evapotranspiration in a mountainous basin within the North American monsoon region. Water Resour. Res., 46, W02509, doi:10.1029/2009WR008240.

    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., Watts C. J. , Rodríguez J. C. , Garatuza-Payan J. , Mendez-Barroso L. A. , and Saiz-Hernandez J. A. , 2010b: Improved land–atmosphere relations through distributed footprint sampling in a subtropical scrubland during the North American monsoon. J. Arid Environ., 74, 579584.

    • Search Google Scholar
    • Export Citation
  • Watts, C. J., Scott R. L. , Garatuza-Payan J. , Rodríguez J. C. , Prueger J. H. , Kustas W. P. , and Douglas M. , 2007: Changes in vegetation condition and surface fluxes during NAME 2004. J. Climate, 20, 18101820.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., 2001: Global vegetation root distribution for land modeling. J. Hydrometeor., 2, 525530.

  • Zhang, X. Y., Friedl M. A. , Schaaf C. B. , Strahler A. H. , Hodges J. C. F. , Gao F. , Reed B. C. , and Huet A. , 2003: Monitoring vegetation phenology using MODIS. Remote Sens. Environ., 84, 471475.

    • Search Google Scholar
    • Export Citation
  • Zhu, C., and Lettenmaier D. P. , 2007: Long-term climate and derived surface hydrology and energy flux data for Mexico: 1925–2004. J. Climate, 20, 19361946.

    • Search Google Scholar
    • Export Citation
  • Zhu, C., Cavazos T. , and Lettenmaier D. P. , 2007: Role of antecedent land surface conditions in warm season precipitation over northwestern Mexico. J. Climate, 20, 17741791.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 761 248 17
PDF Downloads 324 85 7