Intercomparison of High-Resolution Precipitation Products over Northwest Europe

C. Kidd * Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by C. Kidd in
Current site
Google Scholar
PubMed
Close
,
P. Bauer European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by P. Bauer in
Current site
Google Scholar
PubMed
Close
,
J. Turk NASA Jet Propulsion Laboratory, Pasadena, California

Search for other papers by J. Turk in
Current site
Google Scholar
PubMed
Close
,
G. J. Huffman Science Systems and Applications, Inc., Lanham, Maryland
NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by G. J. Huffman in
Current site
Google Scholar
PubMed
Close
,
R. Joyce ** National Oceanographic and Atmospheric Administration/National Center for Environmental Prediction/Climate Prediction Center, Camp Springs, Maryland

Search for other papers by R. Joyce in
Current site
Google Scholar
PubMed
Close
,
K.-L. Hsu The Henry Samueli School of Engineering, University of California, Irvine, Irvine, California

Search for other papers by K.-L. Hsu in
Current site
Google Scholar
PubMed
Close
, and
D. Braithwaite The Henry Samueli School of Engineering, University of California, Irvine, Irvine, California

Search for other papers by D. Braithwaite in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Satellite-derived high-resolution precipitation products (HRPP) have been developed to address the needs of the user community and are now available with 0.25° × 0.25° (or less) subdaily resolutions. This paper evaluates a number of commonly available satellite-derived HRPPs covering northwest Europe over a 6-yr period. Precipitation products include the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), the Climate Prediction Center (CPC) morphing (CMORPH) technique, the CPC merged microwave technique, the Naval Research Laboratory (NRL) blended technique, and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) technique. In addition, the Geosynchronous Operational Environmental Satellite (GOES) precipitation index (GPI) and the European Centre for Medium-Range Weather Forecasting (ECMWF) operational forecast model products are included for comparison. Surface reference data from the European radar network is used as ground truth, supported by the Global Precipitation Climatology Centre (GPCC) precipitation gauge analysis and gauge data over the United Kingdom. Measures of correlation, bias ratio, probability of detection, and false alarm ratio are used to evaluate the products. Results show that satellite products generally exhibit a seasonal cycle in correlation, bias ratio, probability of detection, and false alarm ratio, with poorer statistics during the winter. The ECMWF model also shows a seasonal cycle in the correlation, although the results are poorer during the summer, while the bias ratio, probability of detection, and false alarm ratio are consistent through all seasons. Importantly, all the satellite HRPPs underestimate precipitation over northwest Europe in all seasons.

Corresponding author address: Chris Kidd, Code 612.0, NASA Goddard Space Flight Center, Greenbelt, MD 20706. E-mail: chris.kidd@nasa.gov

Abstract

Satellite-derived high-resolution precipitation products (HRPP) have been developed to address the needs of the user community and are now available with 0.25° × 0.25° (or less) subdaily resolutions. This paper evaluates a number of commonly available satellite-derived HRPPs covering northwest Europe over a 6-yr period. Precipitation products include the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), the Climate Prediction Center (CPC) morphing (CMORPH) technique, the CPC merged microwave technique, the Naval Research Laboratory (NRL) blended technique, and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) technique. In addition, the Geosynchronous Operational Environmental Satellite (GOES) precipitation index (GPI) and the European Centre for Medium-Range Weather Forecasting (ECMWF) operational forecast model products are included for comparison. Surface reference data from the European radar network is used as ground truth, supported by the Global Precipitation Climatology Centre (GPCC) precipitation gauge analysis and gauge data over the United Kingdom. Measures of correlation, bias ratio, probability of detection, and false alarm ratio are used to evaluate the products. Results show that satellite products generally exhibit a seasonal cycle in correlation, bias ratio, probability of detection, and false alarm ratio, with poorer statistics during the winter. The ECMWF model also shows a seasonal cycle in the correlation, although the results are poorer during the summer, while the bias ratio, probability of detection, and false alarm ratio are consistent through all seasons. Importantly, all the satellite HRPPs underestimate precipitation over northwest Europe in all seasons.

Corresponding author address: Chris Kidd, Code 612.0, NASA Goddard Space Flight Center, Greenbelt, MD 20706. E-mail: chris.kidd@nasa.gov
Save
  • Adler, R. F., Negri A. J. , Keehn P. R. , and Hakkarinen I. M. , 1993: Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data. J. Appl. Meteor., 32, 335356.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., Kidd C. , Petty G. , Morissey M. , Goodman H. M. , 2001: Intercomparison of global precipitation products: The third Precipitation Intercomparison Project (PIP-3). Bull. Amer. Meteor. Soc., 82, 13771396.

    • Search Google Scholar
    • Export Citation
  • Agusti-Panareda, A., and Beljaars A. , 2008: ECMWF’s contribution to AMMA. ECMWF Newsletter, No. 115, ECMWF, Reading, United Kingdom, 19–27.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and Meisner B. N. , 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115, 5174.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and Xie P. P. , 1994: The Global Precipitation Climatology Project: First Algorithm Intercomparison Project. Bull. Amer. Meteor. Soc., 75, 401419.

    • Search Google Scholar
    • Export Citation
  • Ba, M. B., and Gruber A. , 2001: GOES Multispectral Rainfall Algorithm (GMSRA). J. Appl. Meteor., 40, 15001514.

  • Barrett, E. C., Kidd C. , and Bailey J. O. , 1987: The use of SMMR data in support of the Bristol/NOAA interactive scheme (BIAS) for satellite improved rainfall monitoring. Annual Rep. to the U.S. Department of Commerce, Cooperative Agreement NA86AA-H-RA001, 77 pp.

    • Search Google Scholar
    • Export Citation
  • Barrett, E. C., and Coauthors, 1994: The first WetNet Precipitation Intercomparison Project: Interpretation of results. Remote Sens. Rev., 11, 303373.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., 2001: Over-ocean rainfall retrieval from multisensory data or the Tropical Rainfall Measuring Mission. Part I: Design and evaluation of inversion databases. J. Atmos. Oceanic Technol., 18, 13151330.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., Geer A. J. , Lopez P. , and Salmond D. , 2010: Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation. Quart. J. Roy. Meteor. Soc., 136, 18681885.

    • Search Google Scholar
    • Export Citation
  • Beck, C., Grieser J. , and Rudolf B. , 2005: A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. Klimastatusbericht 2004, Deutscher Wetterdienst, 181–190.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Imam B. , Hsu K.-L. , Sorooshian S. , Bellerby T. J. , and Huffman G. J. , 2010: REFAME: Rain Estimation Using Forward-Adjusted Advection of Microwave Estimates. J. Hydrometeor., 11, 13051321.

    • Search Google Scholar
    • Export Citation
  • Berg, W., Kummerow C. , and Morales C. A. , 2002: Differences between east and west Pacific rainfall systems. J. Climate, 15, 36593672.

    • Search Google Scholar
    • Export Citation
  • Berg, W., L’Ecuyer T. , and Kummerow C. , 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454.

    • Search Google Scholar
    • Export Citation
  • Dai, A., Fung I. Y. , and Del Genio A. D. , 1997: Surface observed global land precipitation variations during 1900–1988. J. Climate, 10, 29432962.

    • Search Google Scholar
    • Export Citation
  • Dodge, J., and Goodman H. M. , 1994: The WetNet Project. Remote Sens. Rev., 11, 521.

  • Ebert, E. E., and Manton M. J. , 1998: Performance of satellite rainfall estimation algorithms during TOGA COARE. J. Atmos. Sci., 55, 15371557.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Manton M. J. , Arkin P. A. , Allam R. J. , Holpin C. E. , and Gruber A. , 1996: Results from the GPCP Algorithm Intercomparison Programme. Bull. Amer. Meteor. Soc., 77, 28752887.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Janowiak J. E. , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764.

    • Search Google Scholar
    • Export Citation
  • Geer, A., Bauer P. , and Lopez P. , 2010: Direct 4D-Var assimilation of all-sky radiances. Part II: Assessment. Quart. J. Roy. Meteor. Soc., 136, 18861905.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. L., Driscoll S. J. , and Kitchen M. , 2000: Improving precipitation estimates from weather radar using quality control and correction techniques. Meteor. Appl., 7, 135144.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., Gao X. , Sorooshian S. , and Gupta H. V. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Klepp C. , 2011: Fifth Workshop of the International Precipitation Working Group. Bull. Amer. Meteor. Soc.,30, 54–57.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Morrissey M. M. , Bolvin D. T. , Curtis S. , Joyce R. , McGavock B. , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., and Kostinski A. B. , 2002: Spurious power-law relations among rainfall and radar parameters. Quart. J. Roy. Meteor. Soc., 128, 20452058.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., Joyce R. J. , and Yarosh Y. , 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205217.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2010: The ECMWF model climate: Recent progress through improved physical parametrizations. Quart. J. Roy. Meteor. Soc., 136, 11451160.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., and Huffman G. , 2011: Global precipitation measurement. Meteor. Appl., 18, 334353.

  • Kidd, C., and Levizzani V. , 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 11091116, doi:10.5194/hess-15-1109-2011.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., Kniveton D. , and Barrett E. C. , 1998: Advantage and disadvantages of statistical/empirical satellite estimation of rainfall. J. Atmos. Sci., 55, 15761582.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., Kniveton D. , Todd M. C. , and Bellerby T. J. , 2003: Satellite rainfall estimation using a combined passive microwave and infrared algorithm. J. Hydrometeor., 4, 10881104.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., Levizzani V. , Turk J. , and Ferraro R. , 2009: Satellite precipitation measurements for water resource monitoring. J. Amer. Water Resour. Assoc., 45, 567579.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., Ferraro R. , and Levizzani V. , 2010: The Fourth International Precipitation Working Group Workshop. Bull. Amer. Meteor. Soc., 91, 10951099.

    • Search Google Scholar
    • Export Citation
  • Klepp, C.-P., Bakan S. , and Graßl H. , 2003: Improvements of satellite-derived cyclonic rainfall over the North Atlantic. J. Climate, 16, 657669.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP Project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Olson W. S. , and Giglio L. , 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles form passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232.

    • Search Google Scholar
    • Export Citation
  • Lensky, I. M., and Rosenfeld D. , 2008: Clouds–Aerosols–Precipitation Satellite Analysis Tool (CAPSAT). Atmos. Chem. Phys., 8, 67396753, doi:10.5194/acp-8-6739-2008.

    • Search Google Scholar
    • Export Citation
  • Lu, C., Yuan H. , Tollerud E. I. , and Wang N. , 2010: Scale-dependent uncertainties in global QPFs and QPEs from NWP model and satellite fields. J. Hydrometeor., 11, 139150.

    • Search Google Scholar
    • Export Citation
  • Murao, H., Nishikawa I. , Kitamura S. , Yamada M. , and Xie P. P. , 1993: A hybrid neural-network system for the rainfall estimation using satellite imagery. Proc. 1993 Int. Joint Conf. on Neural Networks, Nagoya, Japan, IEEE, 1211–1214.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., Kummerow C. D. , Hong Y. , and Tao W.-K. , 1999: Atmospheric latent heating distributions in the tropics derived from satellite passive microwave radiometer measurements. J. Appl. Meteor., 38, 633664.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., and Dills P. N. , 1994: Cloud motion and height measurements from multiple satellites including cloud heights and motions in polar regions. Preprints, Seventh Conf. on Satellite Meteorology and Oceanography, Monterey, CA, Amer. Meteor. Soc., 408–411.

    • Search Google Scholar
    • Export Citation
  • Roebber, P., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608.

  • Sapiano, M. R. P., and Arkin P. A. , 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149166.

    • Search Google Scholar
    • Export Citation
  • Scofield, R. A., and Kuligowski R. J. , 2003: Status and outlook of operational satellite precipitation algorithms for extreme events. Wea. Forecasting, 18, 10371051.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and Coauthors, 2000: Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46, 159207.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., and Coauthors, 1998: Results of the WetNet PIP-2 Project. J. Atmos. Sci., 55, 14831536.

  • Sohn, B. J., Han H.-J. , and Seo E.-K. , 2010: Validation of satellite-based high-resolution rainfall products over the Korean Peninsula using data from a dense rain gauge network. J. Appl. Meteor. Climatol., 49, 701714.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K.-L. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., Goodman H. M. , and Hood R. E. , 1989: Precipitation retrieval over land and ocean with SSM/I. Part I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273.

    • Search Google Scholar
    • Export Citation
  • Strangeways, I., 2004: Improving precipitation measurement. Int. J. Climatol., 24, 14431460.

  • Surussavadee, C., and Staelin D. H. , 2010: Global precipitation retrievals using the NOAA AMSU millimeter-wave channels: Comparisons with rain gauges. J. Appl. Meteor. Climatol., 49, 124135.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., and Miller S. D. , 2005: Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens., 43, 10591069.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Arkin P. , Ebert E. E. , and Sapiano M. R. P. , 2008: Evaluating high-resolution precipitation products. Bull. Amer. Meteor. Soc., 89, 19111916.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Mostovoy G. V. , and Anantharaj V. , 2010: The NRL-Blend high resolution precipitation product and its application to land surface hydrology. Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 85–104, doi:10.1007/978-90-481-2915-7_6.

    • Search Google Scholar
    • Export Citation
  • Vicente, G. A., Scofield R. A. , and Menzel W. P. , 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79, 18831898.

    • Search Google Scholar
    • Export Citation
  • Weng, F. W., Zhao L. , Ferraro R. R. , Pre G. , Li X. , and Grody N. C. , 2003: Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci., 38, 8068, doi:10.1029/2002RS002679.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., Chang A. T. C. , and Chiu L. S. , 1991: Retrieval of monthly rainfall indices from microwave radiometric measurements using probability distribution functions. J. Atmos. Oceanic Technol., 8, 118136.

    • Search Google Scholar
    • Export Citation
  • Zhao, L., and Weng F. , 2002: Retrieval of ice cloud parameters using the advanced microwave sounding unit. J. Appl. Meteor., 41, 384395.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1163 296 21
PDF Downloads 831 228 15