Evaluation of Water Stress Impact on the Parameter Values in Stomatal Conductance Models Using Tower Flux Measurement of a Boreal Aspen Forest

Shusen Wang Canada Centre for Remote Sensing, Natural Resources Canada, Ottawa, Ontario, Canada

Search for other papers by Shusen Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of water stress on plant stomatal conductance (g) has been widely studied but with little consensus as to the processes governing its responses. The photosynthesis-driven stomatal conductance models usually employ constant model parameters and attribute the decrease of g from water stress to the reduction of leaf photosynthesis. This has been challenged by studies showing that the model parameter values decrease when the plant is under water stress. In this study, the impact of plant water stress on the parameter values in stomatal conductance models is evaluated using the approach recently developed by S. Wang et al. and the tower flux measurements at a Canadian boreal aspen forest. Results show that the slope parameter (α) in the stomatal conductance models decreases substantially with the development of plant water stress. The magnitude of this reduction is dependent on how plant water stress is represented. Overall, the relative reduction of α from its maximum value is 28% when soil water content decreases from 0.38 to 0.18 m3 m−3, and is 38% when Bowen ratio increases from 0.25 to 3.5. Equations for α correction to account for water stress impacts are proposed. Further studies on different ecosystems are necessary to quantify the parameter variations with water stress among different climate regions and plant species.

Corresponding author address: Shusen Wang, 588 Booth Street, Ottawa ON K1A 0Y7, Canada. E-mail: shuwang@nrcan.gc.ca

Abstract

The impact of water stress on plant stomatal conductance (g) has been widely studied but with little consensus as to the processes governing its responses. The photosynthesis-driven stomatal conductance models usually employ constant model parameters and attribute the decrease of g from water stress to the reduction of leaf photosynthesis. This has been challenged by studies showing that the model parameter values decrease when the plant is under water stress. In this study, the impact of plant water stress on the parameter values in stomatal conductance models is evaluated using the approach recently developed by S. Wang et al. and the tower flux measurements at a Canadian boreal aspen forest. Results show that the slope parameter (α) in the stomatal conductance models decreases substantially with the development of plant water stress. The magnitude of this reduction is dependent on how plant water stress is represented. Overall, the relative reduction of α from its maximum value is 28% when soil water content decreases from 0.38 to 0.18 m3 m−3, and is 38% when Bowen ratio increases from 0.25 to 3.5. Equations for α correction to account for water stress impacts are proposed. Further studies on different ecosystems are necessary to quantify the parameter variations with water stress among different climate regions and plant species.

Corresponding author address: Shusen Wang, 588 Booth Street, Ottawa ON K1A 0Y7, Canada. E-mail: shuwang@nrcan.gc.ca
Save
  • Addington, R. N., Mitchell R. J. , Oren R. , and Donovan L. A. , 2004: Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris. Tree Physiol., 24, 561569.

    • Search Google Scholar
    • Export Citation
  • Aphalo, P. J., and Jarvis P. G. , 1991: Do stomata respond to relative humidity? Plant Cell Environ., 14, 127132.

  • Arora, V. K., 2003: Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models. Agric. For. Meteor., 118, 2147.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., 1997: Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought. Plant Cell Environ., 20, 11081122.

    • Search Google Scholar
    • Export Citation
  • Ball, J. T., Woodrow I. E. , and Berry J. A. , 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Progress in Photosynthesis Research, J. Biggens, Ed., Vol. 4, Martinus-Nijhoff Publishers, 221–224.

    • Search Google Scholar
    • Export Citation
  • Barr, A. G., Black T. A. , Hogg E. H. , Kljun N. , Morgenstern K. , and Nesic Z. , 2004: Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agric. For. Meteor., 126, 237255.

    • Search Google Scholar
    • Export Citation
  • Barr, A. G., Morgenstern K. , Black T. A. , McCaughey J. H. , and Nesic Z. , 2006: Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux. Agric. For. Meteor., 140, 322337.

    • Search Google Scholar
    • Export Citation
  • Barr, A. G., Black T. A. , Hogg E. H. , Griffis T. , Morgenstern K. , Kljun N. , Theede A. , and Nesic Z. , 2007: Climatic controls on the carbon and water budgets of a boreal aspen forest, 1994–2003. Global Change Biol., 13, 561576.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Goulden M. L. , and Wofsy S. C. , 1999: Controls on evaporation in a boreal spruce forest. J. Climate, 12, 16011618.

  • Black, T. A., and Coauthors, 1996: Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. Global Change Biol., 2, 219229.

    • Search Google Scholar
    • Export Citation
  • Black, T. A., and Coauthors, 2000: Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophys. Res. Lett., 27, 12711274.

    • Search Google Scholar
    • Export Citation
  • Blackman, P. G., and Davies W. J. , 1985: Root to shoot communication in maize plants of the effects of soil drying. J. Exp. Bot., 36, 3948.

    • Search Google Scholar
    • Export Citation
  • Blanken, P. D., and Black T. A. , 2004: The canopy conductance of a boreal aspen forest, Prince Albert National Park, Canada. Hydrol. Processes, 18, 15611578.

    • Search Google Scholar
    • Export Citation
  • Blanken, P. D., and Coauthors, 1997: Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. J. Geophys. Res., 102, 28 91528 927.

    • Search Google Scholar
    • Export Citation
  • Blanken, P. D., Black T. A. , Neumann H. H. , den Hartog G. , Yang P. C. , Nesic Z. , and Lee X. , 2001: The seasonal water and energy exchange above and within a boreal aspen forest. J. Hydrol., 245, 118136.

    • Search Google Scholar
    • Export Citation
  • Blizzard, W. E., and Boyer J. S. , 1980: Comparative resistance of the soil and the plant to water transport. Plant Physiol., 66, 809814.

    • Search Google Scholar
    • Export Citation
  • Buckley, T. N., Mott K. A. , and Farquhar G. D. , 2003: A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ., 26, 17671785.

    • Search Google Scholar
    • Export Citation
  • Calvet, J.-C., 2000: Investigating soil and atmospheric plant water stress using physiological and micrometeorological data. Agric. For. Meteor., 103, 229247.

    • Search Google Scholar
    • Export Citation
  • Calvet, J.-C., and Noilhan J. , 2000: From near-surface to root-zone soil moisture using year-round data. J. Hydrometeor., 1, 393411.

  • Calvet, J.-C., Rivalland V. , Picon-Cochard C. , and Guehl J.-M. , 2004: Modelling forest transpiration and CO2 fluxes—Response to soil moisture stress. Agric. For. Meteor., 124, 143156, doi:10.1016/j.agrformet.2004.01.007.

    • Search Google Scholar
    • Export Citation
  • Colello, G. D., Grivet C. , Sellers P. J. , and Berry J. A. , 1998: Modeling of energy and CO2 flux in a temperate grassland ecosystem with Sib2: May–October 1987. J. Atmos. Sci., 55, 11411169.

    • Search Google Scholar
    • Export Citation
  • Cornic, G., 2000: Drought stress inhibits photosynthesis by decreasing stomatal aperture not by affecting ATP synthesis. Trends Plant Sci., 5, 187188.

    • Search Google Scholar
    • Export Citation
  • Cox, P., Huntingford C. , and Harding R. , 1998: A canopy conductance and photosynthesis model for use in a GCM land surface model. J. Hydrol., 212–213, 7994.

    • Search Google Scholar
    • Export Citation
  • Crombie, D. S., Hipkins H. F. , and Milburn J. A. , 1985: Gas penetration of pit membranes in the xylem of Rhododendron as the cause of acoustically detectable sap cavitation. Aust. J. Plant Physiol., 12, 445453.

    • Search Google Scholar
    • Export Citation
  • Crow, W., and Wood E. , 2003: The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using Ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Adv. Water Resour., 26, 137149, doi:10.1016/S0309-1708(02)00088-X.

    • Search Google Scholar
    • Export Citation
  • Davies, W. J., Metcalfe J. , Lodge T. A. , and da Costa A. R. , 1986: Plant growth substances and the regulation of growth under drought. Aust. J. Plant Physiol., 13, 105125.

    • Search Google Scholar
    • Export Citation
  • Draper, C. S., Mahfouf J.-F. , and Walker J. P. , 2011: Root zone soil moisture from the assimilation of screen-level variables and remotely sensed soil moisture. J. Geophys. Res., 116, D02127, doi:10.1029/2010JD013829.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., 2007: Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF’s Integrated Forecast System and the TMI soil moisture data set. J. Geophys. Res., 112, D03102, doi:10.1029/2006JD007478.

    • Search Google Scholar
    • Export Citation
  • Emanuel, R. E., D’Odorico P. , and Epstein H. E. , 2007: A dynamic soil water threshold for vegetation water stress derived from stomatal conductance models. Water Resour. Res., 43, W03431, doi:10.1029/2005WR004831.

    • Search Google Scholar
    • Export Citation
  • Escorihuela, M. J., Chanzy A. , Wigneron J. P. , and Kerr Y. H. , 2010: Effective soil moisture sampling depth of L-band radiometry: A case study. Remote Sens. Environ., 114, 9951001, doi:10.1016/j.rse.2009.12.011.

    • Search Google Scholar
    • Export Citation
  • Ewers, B. E., and Oren R. , 2000: Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements. Tree Physiol., 20, 579589.

    • Search Google Scholar
    • Export Citation
  • Gao, Q., Zhao P. , Zeng X. , Cai X. , and Shen W. , 2002: A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress. Plant Cell Environ., 25, 13731381.

    • Search Google Scholar
    • Export Citation
  • Gollan, T., Passioura J. B. , and Munns R. , 1986: Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves. Aust. J. Plant Physiol., 13, 459464.

    • Search Google Scholar
    • Export Citation
  • Griffis, T. J., Black T. A. , Morgenstern K. , Barr A. G. , Nesic Z. , Drewitt G. , Gaumont-Guay D. , and McCaughey H. , 2003: Ecophysiological controls on the carbon balances of three southern boreal forests. Agric. For. Meteor., 117, 5371.

    • Search Google Scholar
    • Export Citation
  • Gutschick, V. P., 2007: Plant acclimation to elevated CO2—From simple regularities to biogeographic chaos. Ecol. Modell., 200, 433451.

    • Search Google Scholar
    • Export Citation
  • Gutschick, V. P., and Simonneau T. , 2002: Modelling stomatal conductance of field-grown sunflower under varying soil water status and leaf environment: Comparison of three models of response to leaf environment and coupling with an ABA-based model of response to soil drying. Plant Cell Environ., 25, 14231434.

    • Search Google Scholar
    • Export Citation
  • Halliwell, D. H., and Apps M. J. , 1997: Boreal Ecosystem-Atmosphere Study (BOREAS) biometry and auxiliary sites. Natural Resources Canada Information Rep. FO42-266, 254 pp.

    • Search Google Scholar
    • Export Citation
  • Hanesiak, J. M., and Coauthors, 2011: Characterization and summary of the 1999-2005 Canadian prairie drought. Atmos.–Ocean, doi:10.1080/07055900.2011.626757, 49, 421–452.

    • Search Google Scholar
    • Export Citation
  • Harley, P. C., and Tenhunen J. D. , 1991: Modeling the photosynthetic response of C3 leaves to environmental factors. Modeling Crop Photosynthesis: From Biochemistry to Canopy, K. J. Boote and R. S. Loomis, Eds., American Society of Agronomy, 17–39.

    • Search Google Scholar
    • Export Citation
  • Huang, W. Z., and Schoenau J. J. , 1996: Forms, amounts and distribution of carbon, nitrogen, phosphorus and sulfur in a boreal aspen forest soil. Can. J. Soil Sci., 76, 373385.

    • Search Google Scholar
    • Export Citation
  • Hubbard, R. M., Ryan M. G. , Stiller V. , and Sperry J. S. , 2001: Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant Cell Environ., 24, 113121.

    • Search Google Scholar
    • Export Citation
  • Jacobs, C. M. J., van den Hurk B. J. J. M. , and de Bruin H. A. R. , 1996: Stomatal behaviour and photosynthetic rate of unstressed grapevines in semi-arid conditions. Agric. For. Meteor., 80, 111134.

    • Search Google Scholar
    • Export Citation
  • Jarbeau, J. A., Ewers F. W. , and Davis S. D. , 1995: The mechanism of water stress-induced embolism in two species of chaparral shrubs. Plant Cell Environ., 18, 189196.

    • Search Google Scholar
    • Export Citation
  • Katul, G., Leuning R. , and Oren R. , 2003: Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant Cell Environ., 26, 339350.

    • Search Google Scholar
    • Export Citation
  • Keenan, T., Garcia R. , Friend A. D. , Zaehle S. , Gracia C. , and Sabate S. , 2009: Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling. Biogeosciences, 6, 14231444.

    • Search Google Scholar
    • Export Citation
  • Keenan, T., Sabate S. , and Gracia C. , 2010: Soil water stress and coupled photosynthesis–conductance models: Bridging the gap between conflicting reports on the relative roles of stomatal, mesophyll conductance and biochemical limitations to photosynthesis. Agric. For. Meteor., 150, 443453, doi:10.1016/j.agrformet.2010.01.008.

    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., Waldteufel P. , Wigneron J.-P. , Martinuzzi J. , Font J. , and Berger M. , 2001: Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39, 17291735, doi:10.1109/36.942551.

    • Search Google Scholar
    • Export Citation
  • Kljun, N., Black T. A. , Griffis T. J. , Barr A. G. , Gaumont-Guay D. , Morgenstern K. , McCaughey J. H. , and Nesic Z. , 2006: Response of net ecosystem productivity of three boreal forests stands to drought. Ecosystems, 9, 11281144, doi:10.1007/s10021-005-0082-x.

    • Search Google Scholar
    • Export Citation
  • Krishnan, P., Black T. A. , Grant N. J. , Barr A. G. , Hogg E. H. , Jassal R. S. , and Morgenstern K. , 2006: Impact of changing soil moisture distribution on net ecosystem productivity of a boreal aspen forest during and following drought. Agric. For. Meteor., 139, 208223.

    • Search Google Scholar
    • Export Citation
  • Lai, C. T., Katul G. , Oren R. , Ellsworth D. , and Schafer K. , 2000: Modeling CO2 and water vapor turbulent flux distributions within a forest canopy. J. Geophys. Res., 105, 26 33326 351.

    • Search Google Scholar
    • Export Citation
  • Lawlor, D. W., and Cornic G. , 2002: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ., 25, 275294.

    • Search Google Scholar
    • Export Citation
  • Leuning, R., 1995: A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ., 18, 339355.

  • Li, Z., Zhang Y. , Wang S. , Yuan G. , Yang Y. , Yu G. , and Sun X. , 2011: Evaluating the models of stomatal conductance response to humidity in a tropical rain forest of Xishuangbanna, southwest China. Hydrol. Res., 42, 307317.

    • Search Google Scholar
    • Export Citation
  • Loreto, F., and Centritto M. , 2008: Leaf carbon assimilation in a water-limited world. Plant Biosyst., 142, 154161.

  • Meinzer, F. C., Goldstein G. , Jackson P. , Holbrook N. M. , Gutierrez M. V. , and Cavelier J. , 1995: Environmental and physiological regulation of transpiration in tropical forest gap species: The influence of boundary layer and hydraulic conductance properties. Oecologia, 101, 514522.

    • Search Google Scholar
    • Export Citation
  • Meinzer, F. C., Hinckley T. M. , and Ceulemans R. , 1997: Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy. Plant Cell Environ., 20, 13011308.

    • Search Google Scholar
    • Export Citation
  • Meinzer, P. C., and Grantz D. G. , 1990: Stomatal and hydraulic conductance in growing sugarcane: Stomatal adjustment to water transport capacity. Plant Cell Environ., 13, 383388.

    • Search Google Scholar
    • Export Citation
  • Meinzer, P. C., Grantz D. A. , and Smit B. , 1991: Root signals mediate coordination of stomatal and hydraulic conductance in growing sugarcane. Aust. J. Plant Physiol., 18, 328338.

    • Search Google Scholar
    • Export Citation
  • Mo, X., and Liu S. , 2001: Simulating evapotranspiration and photosynthesis of winter wheat over the growing season. Agric. For. Meteor., 109, 203222.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1995: A reinterpretation of stomatal responses to humidity. Plant Cell Environ., 18, 357364.

  • Mott, K. A., and Parkhurst D. F. , 1991: Stomatal response to humidity in air and helox. Plant Cell Environ., 14, 509515.

  • Nardini, A., and Salleo S. , 2000: Limitation of stomatal conductance by hydraulic traits: Sensing or preventing xylem cavitation? Trees Struct. Funct., 15, 1424.

    • Search Google Scholar
    • Export Citation
  • Oren, R., Sperry J. S. , Ewers B. E. , Pataki D. E. , Phillips N. , and Megonigal J. P. , 2001: Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: Hydraulic and non-hydraulic effects. Oecologia, 126, 2129, doi:10.1007/s004420000497.

    • Search Google Scholar
    • Export Citation
  • Pockman, W. T., Sperry J. S. , and O’Leary J. W. , 1995: Evidence for sustained and significant negative pressure in xylem. Nature, 378, 715716.

    • Search Google Scholar
    • Export Citation
  • Rambal, S., Ourcival J.-M. , Joffre R. , Mouillot F. , Nouvellon Y. , Reichstein M. , and Rocheteau A. , 2003: Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: Scaling from leaf to canopy. Global Change Biol., 9, 18131824.

    • Search Google Scholar
    • Export Citation
  • Raschke, K., 1975: Stomatal action. Annu. Rev. Plant Physiol., 26, 309340.

  • Reichle, R. H., Koster R. D. , Liu P. , Mahanama S. P. P. , Njoku E. G. , and Owe M. , 2007: Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J. Geophys. Res., 112, D09108, doi:10.1029/2006JD008033.

    • Search Google Scholar
    • Export Citation
  • Reichstein, M., and Coauthors, 2002: Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: Revision of current hypotheses? Global Change Biol., 8, 9991017.

    • Search Google Scholar
    • Export Citation
  • Reichstein, M., and Coauthors, 2003: Inverse modeling of seasonal drought effects on canopy CO2/H2O exchange in three Mediterranean ecosystems. J. Geophys. Res., 108, 4726, doi:10.1029/2003JD003430.

    • Search Google Scholar
    • Export Citation
  • Sabater, J. M., Jarlan L. , Calvet J.-C. , Bouyssel F. , and Rosnay P. , 2007: From near-surface to root-zone soil moisture using different assimilation techniques. J. Hydrometeor., 8, 194206.

    • Search Google Scholar
    • Export Citation
  • Sala, A., and Tenhunen J. D. , 1996: Simulations of canopy net photosynthesis and transpiration in Quercus ilex L. under the influence of seasonal drought. Agric. For. Meteor., 78, 203222.

    • Search Google Scholar
    • Export Citation
  • Saliendra, N. Z., Sperry J. S. , and Comstock J. P. , 1995: Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis. Planta, 196, 357366.

    • Search Google Scholar
    • Export Citation
  • Schäfer, K. V. R., Oren R. , and Tenhunen J. D. , 2000: The effect of tree height on crown level stomatal conductance. Plant Cell Environ., 23, 365375.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 1: Model formulation. J. Climate, 9, 676705.

    • Search Google Scholar
    • Export Citation
  • Sperry, J. S., 2000: Hydraulic constraints on plant gas exchange. Agric. For. Meteor., 104, 1323.

  • Sperry, J. S., Saliendra N. Z. , Pockman W. T. , Cochard H. E. , Cruziat P. , Davis S. D. , Ewers F. W. , and Tyree M. T. , 1996: New evidence for large negative xylem pressures and their measurement by the pressure chamber method. Plant Cell Environ., 19, 427436.

    • Search Google Scholar
    • Export Citation
  • Steudle, E., 1994: The regulation of plant water at the cell, tissue, and organ level: Role of active process and of compartmentation. Flux Control in Biological Systems: From Enzymes to Populations and Ecosystems, E. D. Schulze, Ed., Academic Press, 237–299.

    • Search Google Scholar
    • Export Citation
  • Stewart, J. B., 1988: Modelling surface conductance of a pine forest. Agric. For. Meteor., 43, 1935.

  • Tanaka, K., Kosugi Y. , and Nakamura A. , 2002: Impact of leaf physiological characteristics on seasonal variation in CO2, latent and sensible heat exchanges over a tree plantation. Agric. For. Meteor., 114, 103122.

    • Search Google Scholar
    • Export Citation
  • Tenhunen, J. D., Sala A. , Harley P. C. , Dougherty R. L. , and Reynolds J. F. , 1990: Factors influencing carbon fixation and water use by Mediterranean selerophyll shrubs during summer drought. Oecologia, 82, 381393.

    • Search Google Scholar
    • Export Citation
  • Tominaga, M., Kinoshita T. , and Shimazaki K.-i. , 2001: Guard-cell chloroplasts provide ATP required for H+ pumping in the plasma membrane and stomatal opening. Plant Cell Physiol., 42, 795802.

    • Search Google Scholar
    • Export Citation
  • Valentini, R., Gamon J. A. , and Field C. B. , 1995: Ecosystem gas exchange in a California grassland—Seasonal patterns and implications for scaling. Ecology, 76, 19401952.

    • Search Google Scholar
    • Export Citation
  • Van Rees, K., 1997: Rooting patterns of boreal tree species. Prince Albert Model Forest Association Rep., 55 pp.

  • Van Wijk, M. T., Dekker S. C. , Bouten W. , Bosveld F. C. , Kohsiek W. , Kramer K. , and Mohren G. M. J. , 2000: Modeling daily gas exchange of a Douglas-fir forest: Comparison of three stomatal conductance models with and without a soil water stress function. Tree Physiol., 20, 115122.

    • Search Google Scholar
    • Export Citation
  • Walker, J., and Houser P. , 2001: A methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations. J. Geophys. Res., 106 (D11), 11 76111 774.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Miller D. R. , Sammis T. W. , Gutschick V. P. , Simmons L. J. , and Andales A. A. , 2007: Energy balance measurements and a simple model for estimating pecan water use efficiency. Agric. Water Manage., 91, 92101.

    • Search Google Scholar
    • Export Citation
  • Wang, S., 2008: Simulation of evapotranspiration and its response to plant water and CO2 transfer dynamics. J. Hydrometeor., 9, 426443.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Grant R. F. , Verseghy D. L. , and Black T. A. , 2001: Modelling plant carbon and nitrogen dynamics of a boreal aspen forest in CLASS—The Canadian Land Surface Scheme. Ecol. Modell., 142, 135154.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Grant R. F. , Verseghy D. L. , and Black T. A. , 2002: Modelling carbon-coupled energy and water dynamics of a boreal aspen forest in a general circulation model land surface scheme. Int. J. Climatol., 22, 12491265.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Yang Y. , and Trishchenko A. P. , 2009a: Assessment of canopy stomatal conductance models using flux measurements. Ecol. Modell., 220, 21152118, doi:10.1016/j.ecolmodel.2009.04.044.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Yang Y. , Trishchenko A. P. , Barr A. G. , Black T. A. , and McCaughey H. , 2009b: Modeling the response of canopy stomatal conductance to humidity. J. Hydrometeor., 10, 521532.

    • Search Google Scholar
    • Export Citation
  • Wilson, K. B., Baldocchi D. D. , and Hanson P. J. , 2000: Quantifying stomatal and nonstomatal limitation to carbon assimilation resulting from leaf aging and drought in a mature deciduous tree species. Tree Physiol., 20, 787797.

    • Search Google Scholar
    • Export Citation
  • Wolf, A., Akshalov K. , Saliendra N. , Johnson D. A. , and Laca E. A. , 2006: Inverse estimation of Vcmax, leaf area index, and the Ball-Berry parameter from carbon and energy fluxes. J. Geophys. Res., 111, D08S08, doi:10.1029/2005JD005927.

    • Search Google Scholar
    • Export Citation
  • Wu, A., Black T. A. , Verseghy D. L. , Blanken P. D. , Novak M. D. , Chen W. , and Yang P. C. , 2000: A comparison of parameterizations of canopy conductance of aspen and Douglas-fir forests for CLASS. Atmos.–Ocean, 38, 81112.

    • Search Google Scholar
    • Export Citation
  • Xu, L. K., and Baldocchi D. D. , 2003: Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol., 23, 865877.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Wang S. , Barr A. G. , and Black T. A. , 2008: Impact of snow cover on soil temperature and its simulation in a boreal aspen forest. Cold Reg. Sci. Technol., 52, 355370, doi:10.1016/j.coldregions.2007.07.001.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 422 101 5
PDF Downloads 275 47 4