Assessing the Performance of Multiple Regional Climate Model Simulations for Seasonal Mountain Snow in the Upper Colorado River Basin

Nadine Salzmann National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Nadine Salzmann in
Current site
Google Scholar
PubMed
Close
and
Linda O. Mearns National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Linda O. Mearns in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study assesses the performance of the regional climate model (RCM) simulations from the North American Regional Climate Change Assessment Program (NARCCAP) for the Upper Colorado River basin (UCRB), U.S. Rocky Mountains. The UCRB is a major contributor to the Colorado River’s runoff. Its significant snow-dominated hydrological regime makes it highly sensitive to climatic changes, and future water shortage in this region is likely. The RCMs are evaluated with a clear RCM output user’s perspective and a main focus on snow. Snow water equivalent (SWE) and snow duration, as well as air temperature and precipitation from five RCMs, are compared with snowpack telemetry (SNOTEL) observations, with National Centers for Environmental Prediction (NCEP)–National Center for Atmospheric Research (NCAR) Reanalysis II (R2), which provides the boundary conditions for the RCM simulations, and with North American Regional Reanalysis (NARR). Overall, most RCMs were able to significantly improve on the results from the NCEP–NCAR reanalysis. However, in comparison with spatially aggregated point observations and NARR, the RCMs are generally too dry, too warm, simulate too little SWE, and have a too-short snow cover duration with a too-late start and a too-early end of a significant snow cover. The intermodel biases found are partly associated with inadequately resolved topography (at the spatial resolution of the RCMs), imperfect observational data, different forcing techniques (spectral nudging versus no nudging), and the different land surface schemes (LSS). Attributing the found biases to specific features of the RCMs remains difficult or even impossible without detailed knowledge of the physical and technical specification of the models.

Current affiliation: Department of Physical Geography, University of Zurich, Zurich, Switzerland.

Corresponding author address: Nadine Salzmann, University of Zurich, Department of Physical Geography, Winterthurerstrasse 190, 8057 Zurich, Switzerland. E-mail: nadine.salzmann@geo.uzh.ch

Abstract

This study assesses the performance of the regional climate model (RCM) simulations from the North American Regional Climate Change Assessment Program (NARCCAP) for the Upper Colorado River basin (UCRB), U.S. Rocky Mountains. The UCRB is a major contributor to the Colorado River’s runoff. Its significant snow-dominated hydrological regime makes it highly sensitive to climatic changes, and future water shortage in this region is likely. The RCMs are evaluated with a clear RCM output user’s perspective and a main focus on snow. Snow water equivalent (SWE) and snow duration, as well as air temperature and precipitation from five RCMs, are compared with snowpack telemetry (SNOTEL) observations, with National Centers for Environmental Prediction (NCEP)–National Center for Atmospheric Research (NCAR) Reanalysis II (R2), which provides the boundary conditions for the RCM simulations, and with North American Regional Reanalysis (NARR). Overall, most RCMs were able to significantly improve on the results from the NCEP–NCAR reanalysis. However, in comparison with spatially aggregated point observations and NARR, the RCMs are generally too dry, too warm, simulate too little SWE, and have a too-short snow cover duration with a too-late start and a too-early end of a significant snow cover. The intermodel biases found are partly associated with inadequately resolved topography (at the spatial resolution of the RCMs), imperfect observational data, different forcing techniques (spectral nudging versus no nudging), and the different land surface schemes (LSS). Attributing the found biases to specific features of the RCMs remains difficult or even impossible without detailed knowledge of the physical and technical specification of the models.

Current affiliation: Department of Physical Geography, University of Zurich, Zurich, Switzerland.

Corresponding author address: Nadine Salzmann, University of Zurich, Department of Physical Geography, Winterthurerstrasse 190, 8057 Zurich, Switzerland. E-mail: nadine.salzmann@geo.uzh.ch
Save
  • Andreadis, K. M., and Lettenmaier D. P. , 2006: Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv. Water Resour., 29, 872886.

    • Search Google Scholar
    • Export Citation
  • Barnett, J. P., Adam J. C. , and Lettenmaier D. P. , 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., and Shukla J. , 1988: Integration of space and in situ observations to study global climate change. Bull. Amer. Meteor. Soc., 69, 11301143.

    • Search Google Scholar
    • Export Citation
  • Cantelaube, P., and Terres J.-M. , 2005: Seasonal weather forecasts for crop yield modelling in Europe. Tellus, 57A, 476487, doi:10.1111/j.1600-0870.2005.00125.x.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., Carter T. R. , and Giorgi F. , 2002: PRUDENCE employs new methods to assess European climate change. Eos, Trans. Amer. Geophys. Union, 83, 147.

    • Search Google Scholar
    • Export Citation
  • Christensen, N., and Lettenmaier D. P. , 2006: A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River basin. Hydrol. Earth Syst. Sci. Discuss., 3, 37273770.

    • Search Google Scholar
    • Export Citation
  • Christensen, N., Wood A. W. , Voisin N. , Lettenmaier D. P. , and Palmer N. , 2004: The effect of climate change on the hydrology and water resources of the Colorado River basin. Climate Change, 62, 337363.

    • Search Google Scholar
    • Export Citation
  • Cline, D., 1997: Snow surface energy exchanges and snowmelt at a continental, midlatitude Alpine site. Water Resour. Res., 33, 689702.

    • Search Google Scholar
    • Export Citation
  • Clow, D. W., 2010: Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming. J. Climate, 23, 22932306.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158.

    • Search Google Scholar
    • Export Citation
  • Desborough, C. E., 1997: The impact of root weighting on the response of transpiration to moisture stress in a land surface schemes. Mon. Wea. Rev., 125, 19201930.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., Henderson-Sellers A. , and Kennedy P. J. , 1993: Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note TN-387+STR, 72 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO 80307.]

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Essery, R., and Coauthors, 2009: SNOWMIP2: An evaluation of forest snow process simulations. Bull. Amer. Meteor. Soc., 90, 11201135.

  • Fu, C. B., and Coauthors, 2005: Regional Climate Model Intercomparison Project for Asia. Bull. Amer. Meteor. Soc., 86, 257266.

  • Giorgi, F., and Mearns L. O. , 1999: Introduction to special section: Regional climate modeling revisited. J. Geophys. Res., 104D, 63356352.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., Jones C. , and Asrar G. R. , 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175183.

    • Search Google Scholar
    • Export Citation
  • Harris, C., and Coauthors, 2009: Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Sci. Rev., 92 (3–4), 117171, doi:10.1016/j.earscirev.2008.12.002.

    • Search Google Scholar
    • Export Citation
  • Home, F. E., and Kavvas M. L. , 1997: Physics of the spatially averaged snowmelt process. J. Hydrol., 191, 179207.

  • Hunter, T., Tootle G. , and Piechota T. , 2006: Oceanic-atmospheric variability and western U.S. snowfall. Geophys. Res. Lett., 33, L13706, doi:10.1029/2006GL026600.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., and Coauthors, 2010: Simulation of seasonal snowfall over Colorado. Atmos. Res., 97, 462477, doi:10.1016/j.atmosres.2010.04.010.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kopp, T. J., and Kiess R. B. , 1996: The Air Force Global Weather Central snow analysis model. Preprints, 15th Conf. on Weather Analysis and Forecasting, Norfolk, VA, Amer. Meteor. Soc., 220–222.

    • Search Google Scholar
    • Export Citation
  • Kukla, G., 1981: Climatic role of snow covers. Sea level, ice, and climatic change, IAHS Publ. 131, 79–107.

  • Laprise, R., and Coauthors, 2008: Challenging some tenets of Regional Climate Modelling. Meteor. Atmos. Phys., 100, 322.

  • Laternser, M., and Schneebeli M. , 2003: Long-term snow climate trends of the Swiss Alps (1931–99). Int. J. Climatol., 23, 733750.

  • Leung, L. R., and Qian Y. , 2003: The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain. J. Hydrometeor., 4, 10251043.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., Qian Y. , Bian X. , Washington W. M. , Han J. , and Roads J. O. , 2004: Mid-century ensemble regional climate change scenarios for the western United States. Climatic Change, 62, 75113, doi:10.1023/B:CLIM.0000013692.50640.55.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 2004: Representing subgrid snow cover heterogeneities in regional and global models. J. Climate, 17, 13811397.

  • Liston, G. E., and Elder K. , 2006: A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeor., 7, 217234.

    • Search Google Scholar
    • Export Citation
  • Lundberg, A., and Halldin S. , 2001: Snow measurement techniques for land-surface-atmosphere exchange studies in boreal landscapes. Theor. Appl. Climatol., 70 (1–4), 215230.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., and Ambrizzi T. , 2006: Use of regional climate models in impacts assessments and adaptation studies from continental to regional and local scales: The CREAS (Regional Climate Change Scenarios for South America) initiative in South America. Proc. Eighth ICSHMO, Foz do Iguaçu, Brazil, INPE, 291–296.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., Gutowski W. , Jones R. , Leung R. , McGinnis S. , Nunes A. , and Qian Y. , 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, 311.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Molotch, N. P., and Bales R. C. , 2005: Scaling snow observations from the point to the grid element: Implications for observation network design. Water Resour. Res., 41, W11421, doi:10.1029/2005WR004229.

    • Search Google Scholar
    • Export Citation
  • Molotch, N. P., and Bales R. C. , 2006: SNOTEL representativeness in the Rio Grande headwaters on the basis of physiographics and remotely sensed snow cover persistence. Hydrol. Processes, 20, 723739.

    • Search Google Scholar
    • Export Citation
  • Moore, J. N., Harper J. T. , and Greenwood M. C. , 2007: Significance of trends toward earlier snowmelt runoff, Columbia and Missouri Basin headwaters, western United States. Geophys. Res. Lett., 34, L16402, doi:10.1029/2007GL031022.

    • Search Google Scholar
    • Export Citation
  • Nash, L. L., and Gleick P. H. , 1991: The sensitivity of streamflow in the Colorado Basin to climatic changes. J. Hydrol., 125, 221241.

    • Search Google Scholar
    • Export Citation
  • Pan, M., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent. J. Geophys. Res., 108, 8850, doi:10.1029/2003JD003994.

    • Search Google Scholar
    • Export Citation
  • Pepin, N. C., and Losleben M. , 2002: Climate change in the Colorado Rocky Mountains: Free air versus surface temperature trends. Int. J. Climatol., 22, 311329.

    • Search Google Scholar
    • Export Citation
  • Räisänen, J., 2008: Warmer climate: Less or more snow? Climate Dyn., 30, 307319.

  • Regonda, S. K., Rajagopalan B. , Clark M. , and Pitlick J. , 2005: Seasonal cycle shifts in hydroclimatology over the western United States. J. Climate, 18, 372384.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and Halpert M. S. , 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362.

    • Search Google Scholar
    • Export Citation
  • Salzmann, N., Frei C. , Vidale P.-L. , and Hoelzle M. , 2007: The application of Regional Climate Model output for the simulation of high-mountain permafrost scenarios. Global Planet. Change, 56, 188202, doi:10.1016/j.gloplacha.2006.07.006.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., Clark M. P. , Armstrong R. L. , McGinnis D. A. , and Pulwarty R. S. , 1999: Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data. Water Resour. Res., 35, 21452160.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. J., Stitt J. R. , and Sienko M. , 1998: Improved estimates of the areal extent of snow cover from AVHRR data. J. Hydrol., 204, 123.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and Coauthors, 2001: The representation of snow in land surface schemes: Results from PILPS 2(d). J. Hydrometeor., 2, 725.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. T., 2009: Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Processes, 23, 7894.

  • Takle, E. S., and Coauthors, 1999: Project to Intercompare Regional Climate Simulations (PIRCS): Description and initial results. J. Geophys. Res., 104, 19 44319 462.

    • Search Google Scholar
    • Export Citation
  • Takle, E. S., Roads J. , Rockel B. , Gutowski W. J. Jr., Arritt R. W. , Meinke I. , Jones C. G. , and Zadra A. , 2007: Transferability intercomparison: An opportunity for new insight on the global water cycle and energy budget. Bull. Amer. Meteor. Soc., 88, 375384.

    • Search Google Scholar
    • Export Citation
  • Thomson, M. C., Doblas-Reyes F. J. , Mason S. J. , Hagedorn R. , Connor S. J. , Phindela T. , Morse A. P. , and Palmer T. N. , 2006: Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature, 439, 576579.

    • Search Google Scholar
    • Export Citation
  • Tootle, G. A., Piechota T. C. , and Singh A. , 2005: Coupled oceanic-atmospheric variability and U.S. streamflow. Water Resour. Res., 41, W12408, doi:10.1029/2005WR004381.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • USDOI, 2000: Colorado River interim surplus criteria: Final environmental impact statement. Vol. 1. U.S. Department of Interior Publ. [Available online at http://www.usbr.gov/lc/region/g4000/surplus/SURPLUS_FEIS.html.]

    • Search Google Scholar
    • Export Citation
  • USGS, 2002: Precipitation history of the Colorado Plateau region, 1900–2000. U.S. Geological Survey Fact Sheet 119-02, 4 pp. [Available online at http://pubs.usgs.gov/fs/2002/fs119-02/.]

    • Search Google Scholar
    • Export Citation
  • van der Linden, P., and Mitchell J. , 2009: ENSEMBLES: Climate change and its impacts: Summary of research and results from the ENSEMBLES Project. Met Office Hadley Centre, 160 pp.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., 2007: The role of terrestrial snow cover in the climate system. Climate Dyn., 29, 7388, doi:10.1007/s00382-007-0226-0.

  • Verseghy, D. L., 1991: CLASS—A Canadian land surface scheme for GCMs. I. Soil model. Int. J. Climatol., 11, 111133.

  • Verseghy, D. L., 2000: The Canadian Land Surface Scheme (CLASS): Its history and future. Atmos.–Ocean, 38, 113.

  • Yang, Z. L., Dickinson R. E. , Robock A. , and Vinnikov K. Ya. , 1997: On validation of the snow sub-model of the biosphere–atmosphere transfer scheme with Russian snow cover and meteorological observational data. J. Climate, 10, 353373.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., 2005: Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys., 43, RG4002, doi:10.1029/2004RG000157.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., Barry R. G. , and Haeberli W. , 2001: Numnerical simulation of the influence of the seasonal snow cover on the occurrence of permafrost at high altitudes. Norw. J. Geogr., 55, 261266.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1218 551 58
PDF Downloads 254 70 4