Stochastic Simulation of Intermittent DSD Fields in Time

Marc Schleiss Laboratoire de Télédétection Environnementale, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Search for other papers by Marc Schleiss in
Current site
Google Scholar
PubMed
Close
,
Joel Jaffrain Laboratoire de Télédétection Environnementale, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Search for other papers by Joel Jaffrain in
Current site
Google Scholar
PubMed
Close
, and
Alexis Berne Laboratoire de Télédétection Environnementale, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Search for other papers by Alexis Berne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A method for the stochastic simulation of (rain)drop size distributions (DSDs) in space and time using geostatistics is presented. At each pixel, the raindrop size distribution is described by a Gamma distribution with two or three stochastic parameters. The presence or absence of rainfall is modeled using an indicator field. Separable space–time variograms are used to estimate and reproduce the spatial and temporal structures of all these parameters. A simple and user-oriented procedure for the parameterization of the simulator is proposed. The only data required are DSD time series and radar rain-rate (or reflectivity) measurements. The proposed simulation method is illustrated for both frontal and convective precipitation using real data collected in the vicinity of Lausanne, Switzerland. The spatial and temporal structures of the simulated fields are evaluated and validated using DSD measurements from eight independent disdrometers.

Corresponding author address: Alexis Berne, GR C2 564, Station 2, 1015 Lausanne, Switzerland. E-mail: alexis.berne@epfl.ch

Abstract

A method for the stochastic simulation of (rain)drop size distributions (DSDs) in space and time using geostatistics is presented. At each pixel, the raindrop size distribution is described by a Gamma distribution with two or three stochastic parameters. The presence or absence of rainfall is modeled using an indicator field. Separable space–time variograms are used to estimate and reproduce the spatial and temporal structures of all these parameters. A simple and user-oriented procedure for the parameterization of the simulator is proposed. The only data required are DSD time series and radar rain-rate (or reflectivity) measurements. The proposed simulation method is illustrated for both frontal and convective precipitation using real data collected in the vicinity of Lausanne, Switzerland. The spatial and temporal structures of the simulated fields are evaluated and validated using DSD measurements from eight independent disdrometers.

Corresponding author address: Alexis Berne, GR C2 564, Station 2, 1015 Lausanne, Switzerland. E-mail: alexis.berne@epfl.ch
Save
  • Alabert, F., 1987: Stochastic imaging of spatial distributions using hard and soft information. M.S. thesis, Dept. of Applied Earth Sciences, Stanford University, 198 pp.

  • Andsager, K., Beard K. V. , and Laird N. F. , 1999: Laboratory measurements of axis ratios for large rain drops. J. Atmos. Sci., 56, 26732683.

    • Search Google Scholar
    • Export Citation
  • Barancourt, C., Creutin J.-D. , and Rivoirard J. , 1992: A method for delineating and estimating rainfall fields. Water Resour. Res., 28, 11331144.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Beard, K. V., 1977: Terminal velocity adjustment for cloud and precipitation drops aloft. J. Atmos. Sci., 34, 12931298.

  • Beier, C., Hansen K. , and Gundersen P. , 1993: Spatial variability of throughfall fluxes in a spruce forest. Environ. Pollut., 81, 257267.

    • Search Google Scholar
    • Export Citation
  • Berne, A., and Uijlenhoet R. , 2005: A stochastic model of range profiles of raindrop size distributions: Application to radar attenuation correction. Geophys. Res. Lett., 32, L10803, doi:10.1029/2004GL021899.

    • Search Google Scholar
    • Export Citation
  • Bouvier, C., Cisneros L. , Dominguez R. , Laborde J.-P. , and Lebel T. , 2003: Generating rainfall fields using principal components (PC) decomposition of the covariance matrix: A case study in Mexico City. J. Hydrol., 278 (1–4), 107120.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Chandrasekar V. , Balakrishnan N. , and Zrnić D. S. , 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829840.

    • Search Google Scholar
    • Export Citation
  • Chilès, J.-P., and Delfiner P. , 1999: Geostatistics: Modeling Spatial Uncertainty. Wiley Series in Probability and Statistics, Applied Probability and Statistics, Wiley, 695 pp.

  • Crane, R. K., 1989: Automatic cell detection and tracking. IEEE Trans. Geosci. Electron., 17, 250262.

  • Delrieu, G., Hucke L. , and Creutin J.-D. , 1999: Attenuation in rain for X- and C-band weather radar systems: Sensitivity with respect to the drop size distribution. J. Appl. Meteor., 38, 5768.

    • Search Google Scholar
    • Export Citation
  • Germann, U., Galli G. , Boscacci M. , and Bolliger M. , 2006: Radar precipitation measurement in a mountainous region. Quart. J. Roy. Meteor. Soc., 132, 16691692, doi:10.1256/qj.05.190.

    • Search Google Scholar
    • Export Citation
  • Guillot, G., 1999: Approximation of Sahelian rainfall fields with meta-Gaussian random functions—Part 1: Model definition and methodology. Stochastic Environ. Res. Risk Assess., 13 (1–2), 100112.

    • Search Google Scholar
    • Export Citation
  • Gupta, V. K., and Waymire E. , 1993: A statistical analysis of mesoscale rainfall as a random cascade. J. Appl. Meteor., 32, 251267.

  • Jaffrain, J., and Berne A. , 2011: Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J. Hydrometeor., 12, 352370.

    • Search Google Scholar
    • Export Citation
  • Jaffrain, J., Studzinski A. , and Berne A. , 2011: A network of disdrometers to quantify the small-scale variability of the raindrop size distribution. Water Resour. Res., 47, W00H06, doi:10.1029/2010WR009872.

    • Search Google Scholar
    • Export Citation
  • Journel, A. G., and Huijbregts C. J. , 1978: Mining Geostatistics. Academic Press, 600 pp.

  • Katz, R. W., 1977: An application of chain-dependent processes to meteorology. J. Appl. Probab., 14, 598603.

  • Kinnell, P. I. A., 2005: Raindrop-impact-induced erosion processes and prediction: A review. Hydrol. Processes, 19, 28152844.

  • Koster, R. D., and Suarez M. J. , 1995: Relative contributions of land and ocean processes to precipitation variability. J. Geophys. Res., 100 (D7), 775790.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Smith J. A. , 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25, 13871394.

  • Krajewski, W. F., Raghavan R. , and Chandrasekar V. , 1993: Physically based simulation of radar rainfall data using a space–time rainfall model. J. Appl. Meteor., 32, 268283.

    • Search Google Scholar
    • Export Citation
  • Lavergnat, J., and Golé P. , 2006: A stochastic model of raindrop release: Application to the simulation of point rain observations. J. Hydrol., 328 (1–2), 819.

    • Search Google Scholar
    • Export Citation
  • Lee, G., Seed A. W. , and Zawadzki I. , 2007: Modeling the variability of drop size distributions in space and time. J. Appl. Meteor. Climatol., 46, 742756.

    • Search Google Scholar
    • Export Citation
  • Leijnse, H., Uijlenhoet R. , and Stricker J. N. M. , 2007: Rainfall measurement using radio links from cellular communication networks. Water Resour. Res., 43, W03201, doi:10.1029/2006WR005631.

    • Search Google Scholar
    • Export Citation
  • Leuangthong, O., and Deutsch C. V. , 2003: Stepwise conditional transformation for simulation of multiple variables. Math. Geol., 35, 155173.

    • Search Google Scholar
    • Export Citation
  • Li, B., Murthi A. , Bowman K. , North G. , Genton M. , and Sherman M. , 2009: Statistical tests of Taylor’s hypothesis: An application to precipitation fields. J. Hydrometeor., 10, 254265.

    • Search Google Scholar
    • Export Citation
  • Loffler-Mang, M., and Joss J. , 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139.

    • Search Google Scholar
    • Export Citation
  • Matheron, G., 1965: Les Variables Régionalisées et Leur Estimation. Masson et Cie, 305 pp.

  • Menabde, M., Seed A. , Harris D. , and Austin G. , 1997: Self-similar random fields and rainfall simulation. J. Geophys. Res., 102 (D12), 13 50913 515.

    • Search Google Scholar
    • Export Citation
  • Messer, H., Zinevich A. , and Alpert P. , 2006: Environmental monitoring by wireless communication networks. Science, 312, 713, doi:10.1126/science.1120034.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M., Travis L. , and Lacis A. , 2002: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press, 445 pp.

  • Moisseev, D. N., and Chandrasekar V. , 2007: Examination of the μ-δ relation suggested for drop size distribution parameters. J. Atmos. Oceanic Technol., 24, 847855.

    • Search Google Scholar
    • Export Citation
  • Pebesma, E. J., 2004: Multivariate geostatistics in S: The gstat package. Comput. Geosci., 30, 683691, doi:10.1016/j.cageo.2004.03.012.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and Klett R. L. , 1997: Microphysics of Clouds and Precipitation. 2nd ed. Atmospheric and Oceanographic Sciences Library, Vol. 18, Kluwer Academic Press, 954 pp.

  • R Development Core Team, 2011: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 3460 pp. [Available online at http://www.R-project.org/.]

  • Richardson, C., 1981: Stochastic simulation of daily precipitation, temperature and solar radiation. Water Resour. Res., 17, 182190.

  • Rinehart, R. E., 1979: Internal storm motions from a single non-doppler weather radar. Ph.D. dissertation, Colorado State University, 280 pp.

  • Ripley, B. D., 1987: Stochastic Simulation. Wiley, 237 pp.

  • Rodríguez-Iturbe, I., and Eagleson P. S. , 1987: Mathematical models of rainstorm events in space and time. Water Resour. Res., 23, 181190.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671.

  • Schleiss, M. A., Berne A. , and Uijlenhoet R. , 2009: Geostatistical simulation of two-dimensional fields of raindrop size distributions at the meso-γ scale. Water Resour. Res., 45, W07415, doi:10.1029/2008WR007545.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., 2005: On the shape-slope relation of drop size distributions in convective rain. J. Appl. Meteor., 44, 11461151.

  • Sivapalan, M., and Wood E. F. , 1987: A multidimensional model of nonstationary space-time rainfall at the catchment scale. Water Resour. Res., 23, 12891299.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Hui E. , Steiner M. , Baeck M. L. , Krajewski W. , and Ntelekos A. A. , 2009: Variability of rainfall rate and raindrop size distributions in heavy rain. Water Resour. Res., 45, W04430, doi:10.1029/2008WR006840.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 164, 476490.

  • Testud, J., Le Bouar E. , Obligis E. , and Ali-Mehenni M. , 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356.

    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and Foote G. B. , 1990: Determination of the boundary layer airflow from a single Doppler radar. J. Atmos. Oceanic Technol., 7, 218232.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1985: The effects of drop size distribution truncation on rainfall integral parameters and empirical relations. J. Climate Appl. Meteor., 24, 580590.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and Atlas D. , 2007: Microphysics of raindrop size spectra: Tropical continental and maritime storms. J. Appl. Meteor. Climatol., 46, 17771791.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and Krajewski W. F. , 2010: Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys., 31, 107129.

    • Search Google Scholar
    • Export Citation
  • Waymire, E., Gupta V. K. , and Rodriguez-Iturbe I. , 1984: A spectral theory of rainfall intensity at the meso-β scale. Water Resour. Res., 20, 14531465.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1999: Simultaneous stochastic simulation of daily precipitation, temperature and solar radiation at multiple sites in complex terrain. Agric. For. Meteor., 96 (1–3), 85101.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 16481661.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. M., and Brandes E. A. , 1979: Radar measurement of rainfall—A summary. Bull. Amer. Meteor. Soc., 60, 10481058.

  • Zhang, G., Vivekanandan J. , and Brandes E. , 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830841.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 801 573 29
PDF Downloads 153 57 9