Modeling Potential Equilibrium States of Vegetation and Terrestrial Water Cycle of Mesoamerica under Climate Change Scenarios

Pablo Imbach Climate Change Program, CATIE, Cartago, Costa Rica

Search for other papers by Pablo Imbach in
Current site
Google Scholar
PubMed
Close
,
Luis Molina Climate Change Program, CATIE, Cartago, Costa Rica

Search for other papers by Luis Molina in
Current site
Google Scholar
PubMed
Close
,
Bruno Locatelli CIRAD UPR Forest Ecosystem Services, Montpellier, France, and CIFOR ENV Program, Bogor, Indonesia

Search for other papers by Bruno Locatelli in
Current site
Google Scholar
PubMed
Close
,
Olivier Roupsard Climate Change Program, CATIE, Cartago, Costa Rica
CIRAD-Persyst, UPR80, Fonctionnement et Pilotage des Ecosystèmes de Plantations, Montpellier, France

Search for other papers by Olivier Roupsard in
Current site
Google Scholar
PubMed
Close
,
Gil Mahé IRD/HSM, University Mohamed V, Rabat-Agdal, Morocco

Search for other papers by Gil Mahé in
Current site
Google Scholar
PubMed
Close
,
Ronald Neilson ** Pacific Northwest Research Station, USDA Forest Service, Corvallis, Oregon

Search for other papers by Ronald Neilson in
Current site
Google Scholar
PubMed
Close
,
Lenin Corrales Apdo, San José, Costa Rica

Search for other papers by Lenin Corrales in
Current site
Google Scholar
PubMed
Close
,
Marko Scholze School of Earth Sciences, University of Bristol, Bristol, United Kingdom

Search for other papers by Marko Scholze in
Current site
Google Scholar
PubMed
Close
, and
Philippe Ciais IPSL–LSCE, CEA CNRS UVSQ, Centre d’Etudes Orme des Merisiers, Gif-sur-Yvette, France

Search for other papers by Philippe Ciais in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The likelihood and magnitude of the impacts of climate change on potential vegetation and the water cycle in Mesoamerica is evaluated. Mesoamerica is a global biodiversity hotspot with highly diverse topographic and climatic conditions and is among the tropical regions with the highest expected changes in precipitation and temperature under future climate scenarios. The biogeographic soil–vegetation–atmosphere model Mapped Atmosphere Plant Soil System (MAPSS) was used for simulating the integrated changes in leaf area index (LAI), vegetation types (grass, shrubs, and trees), evapotranspiration, and runoff at the end of the twenty-first century. Uncertainty was estimated as the likelihood of changes in vegetation and water cycle under three ensembles of model runs, one for each of the groups of greenhouse gas emission scenarios (low, intermediate, and high emissions), for a total of 136 runs generated with 23 general circulation models (GCMs). LAI is likely to decrease over 77%–89% of the region, depending on climate scenario groups, showing that potential vegetation will likely shift from humid to dry types. Accounting for potential effects of CO2 on water use efficiency significantly decreased impacts on LAI. Runoff will decrease across the region even in areas where precipitation increases (even under increased water use efficiency), as temperature change will increase evapotranspiration. Higher emission scenarios show lower uncertainty (higher likelihood) in modeled impacts. Although the projection spread is high for future precipitation, the impacts of climate change on vegetation and water cycle are predicted with relatively low uncertainty.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-11-023.s1.

Current affiliation: Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon.

Corresponding author address: Pablo Imbach, CATIE 7170, Turrialba, Cartago 30501, Costa Rica. E-mail: pimbach@catie.ac.cr

This article is included in the Hydrology in Earth System Science and Society (HESSS) special collection.

Abstract

The likelihood and magnitude of the impacts of climate change on potential vegetation and the water cycle in Mesoamerica is evaluated. Mesoamerica is a global biodiversity hotspot with highly diverse topographic and climatic conditions and is among the tropical regions with the highest expected changes in precipitation and temperature under future climate scenarios. The biogeographic soil–vegetation–atmosphere model Mapped Atmosphere Plant Soil System (MAPSS) was used for simulating the integrated changes in leaf area index (LAI), vegetation types (grass, shrubs, and trees), evapotranspiration, and runoff at the end of the twenty-first century. Uncertainty was estimated as the likelihood of changes in vegetation and water cycle under three ensembles of model runs, one for each of the groups of greenhouse gas emission scenarios (low, intermediate, and high emissions), for a total of 136 runs generated with 23 general circulation models (GCMs). LAI is likely to decrease over 77%–89% of the region, depending on climate scenario groups, showing that potential vegetation will likely shift from humid to dry types. Accounting for potential effects of CO2 on water use efficiency significantly decreased impacts on LAI. Runoff will decrease across the region even in areas where precipitation increases (even under increased water use efficiency), as temperature change will increase evapotranspiration. Higher emission scenarios show lower uncertainty (higher likelihood) in modeled impacts. Although the projection spread is high for future precipitation, the impacts of climate change on vegetation and water cycle are predicted with relatively low uncertainty.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-11-023.s1.

Current affiliation: Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon.

Corresponding author address: Pablo Imbach, CATIE 7170, Turrialba, Cartago 30501, Costa Rica. E-mail: pimbach@catie.ac.cr

This article is included in the Hydrology in Earth System Science and Society (HESSS) special collection.

Save
  • Aber, J., Neilson R. P. , McNulty S. , Lenihan J. M. , Bachelet D. , and Drapek R. J. , 2001: Forest processes and global environmental change: Predicting the effects of individual and multiple stressors. Bioscience, 51, 735751.

    • Search Google Scholar
    • Export Citation
  • Aguilar, E., and Coauthors, 2005: Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res., 110, D23107, doi:10.1029/2005JD006119.

    • Search Google Scholar
    • Export Citation
  • Bachelet, D., Brugnach M. , and Neilson R. P. , 1998: Sensitivity of a biogeography model to soil properties. Ecol. Modell., 109, 7798.

    • Search Google Scholar
    • Export Citation
  • Bachelet, D., Neilson R. P. , Lenihan J. M. , and Drapek R. J. , 2001: Climate change effects on vegetation distribution and carbon budget in the United States. Ecosystems, 4, 164185.

    • Search Google Scholar
    • Export Citation
  • Bishop, G. D., Church M. R. , Aber J. D. , Neilson R. P. , Ollinger S. V. , and Daly C. , 1998: A comparison of mapped estimates of long-term runoff in the northeast United States. J. Hydrol., 206, 176190.

    • Search Google Scholar
    • Export Citation
  • Bruijnzeel, L., 2005: Tropical montane cloud forests: A unique hydrological case. Forests, Water and People in the Humid Tropics: Past, Present and Future Hydrological Research for Integrated Land and Water Management, M. Bonell and L. Bruijnzeel, Eds., Cambridge University Press, 462–484.

    • Search Google Scholar
    • Export Citation
  • Bunker, D. E., DeClerck F. , Bradford J. C. , Colwell R. K. , Perfecto I. , Phillips O. L. , Sankaran M. , and Naeem S. , 2005: Species loss and aboveground carbon storage in a tropical forest. Science, 310, 10291031.

    • Search Google Scholar
    • Export Citation
  • Chambers, J., and Silver W. , 2004: Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change. Philos. Trans. Roy. Soc. London, B359, 463476.

    • Search Google Scholar
    • Export Citation
  • Conservation International, cited 2011: Mesoamerica. [Available online at http://www.conservation.org/where/priority_areas/hotspots/north_central_america/Mesoamerica/Pages/biodiversity.aspx.]

    • Search Google Scholar
    • Export Citation
  • Cramer, W., and Coauthors, 2001: Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biol., 7, 357373.

    • Search Google Scholar
    • Export Citation
  • Curtis, J. H., Hodell D. A. , and Brenner M. , 1996: Climate variability on the Yucatan Peninsula (Mexico) during the past 3500 years, and implications for Maya cultural evolution. Quat. Res., 46, 3747.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2010: Drought under global warming: A review. Wiley Interdiscip. Rev.: Climate Change, 2, 4565.

  • DeClerck, F. A. J., and Coauthors, 2010: Biodiversity conservation in human-modified landscapes of Mesoamerica: Past, present and future. Biol. Conserv., 143, 23012313.

    • Search Google Scholar
    • Export Citation
  • Dick, C. W., and Wright S. J. , 2005: Tropical mountain cradles of dry forest diversity. Proc. Natl. Acad. Sci. USA, 102, 10 75710 758.

    • Search Google Scholar
    • Export Citation
  • FAO, 2003: Digital Soil Map of the World and Derived Soil Properties. Land and Water Digital Media Series 1, Food and Agriculture Organization of the United Nations, CD-ROM.

    • Search Google Scholar
    • Export Citation
  • Field, R., and Coauthors, 2009: Spatial species-richness gradients across scales: A meta-analysis. J. Biogeogr., 36, 132147.

  • Gentry, A. H., 1982: Neotropical floristic diversity: Phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann. Mo. Bot. Gard., 69, 557593.

    • Search Google Scholar
    • Export Citation
  • Gillespie, T. W., Zutta B. R. , Early M. K. , and Saatchi S. , 2006: Predicting and quantifying the structure of tropical dry forests in south Florida and the Neotropics using spaceborne imagery. Global Ecol. Biogeogr., 15, 225236.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2006: Climate change hot-spots. Geophys. Res. Lett., 33, L08707, doi:10.1029/2006GL025734.

  • Greenheck, F. M., 2002: Naturaleza, gente y bienestar: Mesoamérica en cifras. Comisión Centroamericana de Ambiente y Desarrollo (CCAD) y Sistema de la Integración Centroamericana (SICA), 39 pp.

    • Search Google Scholar
    • Export Citation
  • Haug, G. H., Günther D. , Peterson L. C. , Sigman D. M. , Hughen K. A. , and Aeschlimann B. , 2003: Climate and the collapse of Maya civilization. Science, 299, 17311735.

    • Search Google Scholar
    • Export Citation
  • Hawkins, B. A., and Coauthors, 2003: Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 31053117.

  • Hély, C., Bremond L. , Alleaume S. , Smith B. , Sykes M. T. , and Guiot J. , 2006: Sensitivity of African biomes to changes in the precipitation regime. Global Ecol. Biogeogr., 15, 258270.

    • Search Google Scholar
    • Export Citation
  • Hickler, T., Smith B. , Prentice I. C. , Mjöfors K. , Miller P. , Arneth A. , and Sykes M. T. , 2008: CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Global Change Biol., 14, 15311542.

    • Search Google Scholar
    • Export Citation
  • Hijmans, R. J., Cameron S. E. , Parra J. L. , Jones P. G. , and Jarvis A. , 2005: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 19651978.

    • Search Google Scholar
    • Export Citation
  • Horton, R. E., 1933: The role of infiltration in the hydrologic cycle. Eos, Trans. Amer. Geophys. Union, 14, 446460.

  • Hulme, M., Barrow E. M. , Arnell N. W. , Harrison P. A. , Johns T. C. , and Downing T. E. , 1999: Relative impacts of human-induced climate change and natural climate variability. Nature, 397, 688691.

    • Search Google Scholar
    • Export Citation
  • Imbach, P., Molina L. , Locatelli B. , Roupsard O. , Ciais P. , Corrales L. , and Mahé G. , 2010: Climatology-based regional modelling of potential vegetation and average annual long-term runoff for Mesoamerica. Hydrol. Earth Syst. Sci., 14, 18011817.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2005: Guidance notes for lead authors of the IPCC Fourth Assessment Report on addressing uncertainties. Intergovernmental Panel on Climate Change, 4 pp.

    • Search Google Scholar
    • Export Citation
  • Jarvis, A., Reuter H. , Nelson A. , and Guevara E. , cited 2008: Hole-filled seamless SRTM data V4. International Center for Tropical Agriculture (CIAT). [Available online at http://srtm.csi.cgiar.org.]

    • Search Google Scholar
    • Export Citation
  • Knapp, A. K., and Coauthors, 2008: Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience, 58, 811821.

    • Search Google Scholar
    • Export Citation
  • Körner, C., 2009: Responses of humid tropical trees to rising CO2. Annu. Rev. Ecol. Evol. Syst., 40, 6179.

  • Körner, C., and Arnone J. A. III, 1992: Responses to elevated carbon dioxide in artificial tropical ecosystems. Science, 257, 16721675.

    • Search Google Scholar
    • Export Citation
  • Kreft, H., and Jetz W. , 2007: Global patterns and determinants of vascular plant diversity. Proc. Natl. Acad. Sci. USA, 104, 59255930.

    • Search Google Scholar
    • Export Citation
  • Lewis, S. L., 2006: Tropical forests and the changing earth system. Philos. Trans. Roy. Soc. London, B361, 195210.

  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428.

    • Search Google Scholar
    • Export Citation
  • Lozano-García, M. S., Caballero M. , Ortega B. , Rodríguez A. , and Sosa S. , 2007: Tracing the effects of the Little Ice Age in the tropical lowlands of eastern Mesoamerica. Proc. Natl. Acad. Sci. USA, 104, 16 20016 203.

    • Search Google Scholar
    • Export Citation
  • MacFadden, B. J., 2006: Extinct mammalian biodiversity of the ancient New World tropics. Trends Ecol. Evol., 21, 157165.

  • Magaña, V., Amador J. A. , and Medina S. , 1999: The midsummer drought over Mexico and Central America. J. Climate, 12, 15771588.

  • Malhi, Y., and Wright J. , 2004: Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos. Trans. Roy. Soc. London, B359, 311329.

    • Search Google Scholar
    • Export Citation
  • MEA, Ed., 2005: Ecosystems and Human Well-Being: Synthesis Report. Millennium Ecosystem Assessment Series, 137 pp. [Available online at http://www.maweb.org/documents/document.356.aspx.pdf.]

    • Search Google Scholar
    • Export Citation
  • Moles, A. T., and Coauthors, 2007: Global patterns in seed size. Global Ecol. Biogeogr., 16, 109116.

  • Myers, N., Mittermeier R. A. , Mittermeier C. G. , da Fonseca G. A. B. , and Kent J. , 2000: Biodiversity hotspots for conservation priorities. Nature, 403, 853858.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and Swart R. , Eds., 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • Neelin, J. D., Münnich M. , Su H. , Meyerson J. E. , and Holloway C. E. , 2006: Tropical drying trends in global warming models and observations. Proc. Natl. Acad. Sci. USA, 103, 61106115.

    • Search Google Scholar
    • Export Citation
  • Neilson, R. P., 1993a: Transient ecotone response to climatic change: Some conceptual and modelling approaches. Ecol. Appl., 3, 385395.

    • Search Google Scholar
    • Export Citation
  • Neilson, R. P., 1993b: Vegetation redistribution: A possible biosphere source of CO2 during climatic change. Water Air Soil Pollut., 70, 659673.

    • Search Google Scholar
    • Export Citation
  • Neilson, R. P., 1995: A model for predicting continental-scale vegetation distribution and water balance. Ecol. Appl., 5, 362385.

  • Neilson, R. P., and Marks D. , 1994: A global perspective of regional vegetation and hydrologic sensitivities from climatic change. J. Veg. Sci., 5, 715730.

    • Search Google Scholar
    • Export Citation
  • Neilson, R. P., and Drapek R. J. , 1998: Potentially complex biosphere responses to transient global warming. Global Change Biol., 4, 505521.

    • Search Google Scholar
    • Export Citation
  • Neilson, R. P., Pitelka L. F. , Solomon A. M. , Nathan R. , Midgley G. F. , Fragoso J. M. , Lischke H. , and Thompson K. , 2005: Forecasting regional to global plant migration in response to climate change. Bioscience, 55, 749759.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., O’Donnell G. M. , Lettenmaier D. P. , Lohmann D. , and Wood E. F. , 2001: Predicting the discharge of global rivers. J. Climate, 14, 33073323.

    • Search Google Scholar
    • Export Citation
  • Norby, R. J., and Luo Y. , 2004: Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol., 162, 281293.

    • Search Google Scholar
    • Export Citation
  • Piao, S., Friedlingstein P. , Ciais P. , de Noblet-Ducoudré N. , Labat D. , and Zaehle S. , 2007: Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl. Acad. Sci. USA, 104, 15 24215 247.

    • Search Google Scholar
    • Export Citation
  • Qian, H., 2010: Environment–richness relationships for mammals, birds, reptiles, and amphibians at global and regional scales. Ecol. Res., 25, 629637.

    • Search Google Scholar
    • Export Citation
  • Scholze, M., Knorr W. , Arnell N. W. , and Prentice I. C. , 2006: A climate-change risk analysis for world ecosystems. Proc. Natl. Acad. Sci. USA, 103, 13 11613 120.

    • Search Google Scholar
    • Export Citation
  • Scott, D., Malcolm J. R. , and Lemieux C. , 2002: Climate change and modelled biome representation in Canada’s national park system: Implications for system planning and park mandates. Global Ecol. Biogeogr., 11, 475484.

    • Search Google Scholar
    • Export Citation
  • Sechrest, W., Brooks T. M. , da Fonseca G. A. B. , Konstant W. R. , Mittermeier R. A. , Purvis A. , Rylands A. B. , and Gittleman J. L. , 2002: Hotspots and the conservation of evolutionary history. Proc. Natl. Acad. Sci. USA, 99, 20672071.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., Qin D. , Manning M. , Marquis M. , Averyt K. , Tignor M. M. B. , Miller H. L. Jr., and Chen Z. , Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., Stöckli R. , and Seneviratne S. I. , 2011: Bivariate colour maps for visualizing climate data. Int. J. Climatol., 31, 14081412.

    • Search Google Scholar
    • Export Citation
  • VEMAP Members, 1995: Vegetation/Ecosystem Modeling and Analysis Project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Global Biogeochem. Cycles, 9, 407437.

    • Search Google Scholar
    • Export Citation
  • Vreugdenhil, D., Meerman J. , Meyrat A. , Diego Gómez L. , and Graham D. J. , 2002: Map of the ecosystems of Central America. World Bank Final Rep., 56 pp.

    • Search Google Scholar
    • Export Citation
  • Weir, J. T., Bermingham E. , and Schluter D. , 2009: The Great American Biotic Interchange in birds. Proc. Natl. Acad. Sci. USA, 106, 21 73721 742.

    • Search Google Scholar
    • Export Citation
  • Williams, J. W., Jackson S. T. , and Kutzbach J. E. , 2007: Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. USA, 104, 57385742.

    • Search Google Scholar
    • Export Citation
  • Yates, D. N., Kittel T. G. F. , and Cannon R. F. , 2000: Comparing the correlative Holdridge model to mechanistic biogeographical models for assessing vegetation distribution response to climatic change. Climatic Change, 44, 5987.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5347 3743 503
PDF Downloads 887 168 30