Estimating the Impact of Projected Climate Change on Runoff across the Tropical Savannas and Semiarid Rangelands of Northern Australia

Cuan Petheram * Christian Laboratory, CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by Cuan Petheram in
Current site
Google Scholar
PubMed
Close
,
Paul Rustomji CSIRO Land and Water, Lucas Heights, Kirrawee, New South Wales, Australia

Search for other papers by Paul Rustomji in
Current site
Google Scholar
PubMed
Close
,
Tim R. McVicar * Christian Laboratory, CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by Tim R. McVicar in
Current site
Google Scholar
PubMed
Close
,
WenJu Cai CSIRO Marine and Atmospheric Research, Aspendale, Aspendale, Victoria, Australia

Search for other papers by WenJu Cai in
Current site
Google Scholar
PubMed
Close
,
Francis H. S. Chiew * Christian Laboratory, CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by Francis H. S. Chiew in
Current site
Google Scholar
PubMed
Close
,
Jamie Vleeshouwer Ecosciences Precinct, CSIRO Land and Water, Dutton Park, Queensland, Australia

Search for other papers by Jamie Vleeshouwer in
Current site
Google Scholar
PubMed
Close
,
Thomas G. Van Niel CSIRO Land and Water, Floreat, Wembley, Western Australia, Australia

Search for other papers by Thomas G. Van Niel in
Current site
Google Scholar
PubMed
Close
,
LingTao Li * Christian Laboratory, CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by LingTao Li in
Current site
Google Scholar
PubMed
Close
,
Richard G. Cresswell ** Sinclair Knight Merz, St Leonards, New South Wales, Australia

Search for other papers by Richard G. Cresswell in
Current site
Google Scholar
PubMed
Close
,
Randall J. Donohue * Christian Laboratory, CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by Randall J. Donohue in
Current site
Google Scholar
PubMed
Close
,
Jin Teng * Christian Laboratory, CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by Jin Teng in
Current site
Google Scholar
PubMed
Close
, and
Jean-Michel Perraud * Christian Laboratory, CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by Jean-Michel Perraud in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The majority of the world’s population growth to 2050 is projected to occur in the tropics. Hence, there is a serious need for robust methods for undertaking water resource assessments to underpin the sustainable management of water in tropical regions. This paper describes the largest and most comprehensive assessment of the future impacts of runoff undertaken in a tropical region using conceptual rainfall–runoff models (RRMs). Five conceptual RRMs were calibrated using data from 115 streamflow gauging stations, and model parameters were regionalized using a combination of spatial proximity and catchment similarity. Future rainfall and evapotranspiration projections (denoted here as GCMES) were transformed to catchment-scale variables by empirically scaling (ES) the historical climate series, informed by 15 global climate models (GCMs), to reflect a 1°C increase in global average surface air temperature. Using the best-performing RRM ensemble, approximately half the GCMES used resulted in a spatially averaged increase in mean annual runoff (by up to 29%) and half resulted in a decrease (by up to 26%). However, ~70% of the GCMES resulted in a difference of within ±5% of the historical rainfall (1930–2007). The range in modeled impact on runoff, as estimated by five RRMs (for individual GCMES), was compared to the range in modeled runoff using 15 GCMES (for individual RRMs). For mid- to high runoff metrics, better predictions will come from improved GCMES projections. A new finding of this study is that in the wet–dry tropics, for extremely large runoff events and low flows, improvements are needed in both GCMES and rainfall–runoff modeling.

Corresponding author address: Cuan Petheram, CSIRO Land and Water, Christian Laboratory, GPO Box 1666, Canberra ACT 2601, Australia. E-mail: cuan.petheram@csiro.au

Abstract

The majority of the world’s population growth to 2050 is projected to occur in the tropics. Hence, there is a serious need for robust methods for undertaking water resource assessments to underpin the sustainable management of water in tropical regions. This paper describes the largest and most comprehensive assessment of the future impacts of runoff undertaken in a tropical region using conceptual rainfall–runoff models (RRMs). Five conceptual RRMs were calibrated using data from 115 streamflow gauging stations, and model parameters were regionalized using a combination of spatial proximity and catchment similarity. Future rainfall and evapotranspiration projections (denoted here as GCMES) were transformed to catchment-scale variables by empirically scaling (ES) the historical climate series, informed by 15 global climate models (GCMs), to reflect a 1°C increase in global average surface air temperature. Using the best-performing RRM ensemble, approximately half the GCMES used resulted in a spatially averaged increase in mean annual runoff (by up to 29%) and half resulted in a decrease (by up to 26%). However, ~70% of the GCMES resulted in a difference of within ±5% of the historical rainfall (1930–2007). The range in modeled impact on runoff, as estimated by five RRMs (for individual GCMES), was compared to the range in modeled runoff using 15 GCMES (for individual RRMs). For mid- to high runoff metrics, better predictions will come from improved GCMES projections. A new finding of this study is that in the wet–dry tropics, for extremely large runoff events and low flows, improvements are needed in both GCMES and rainfall–runoff modeling.

Corresponding author address: Cuan Petheram, CSIRO Land and Water, Christian Laboratory, GPO Box 1666, Canberra ACT 2601, Australia. E-mail: cuan.petheram@csiro.au
Save
  • Anagnostopoulos, G. G., Koutsoyiannis D. , Christofides A. , Efstratiadis A. , and Marmassis N. , 2010: A comparison of local and aggregated climate model outputs with observed data. Hydrol. Sci. J., 55, 10941110.

    • Search Google Scholar
    • Export Citation
  • Andreassian, V., Perrin C. , and Michel C. , 2004: Impact of imperfect potential evapotranspiration knowledge on the efficiency and parameters of watershed models. J. Hydrol., 286 (1–4), 1935.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., Knutson T. R. , Tuleya R. E. , Sirutis J. J. , Vecchi G. G. , Garner S. T. , and Held I. M. , 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454458.

    • Search Google Scholar
    • Export Citation
  • Boughton, W., 2004: The Australian water balance model. Environ. Modell. Software, 19, 943956.

  • Boughton, W., 2007: Effect of data length on rainfall–runoff modelling. Environ. Modell. Software, 22, 406413.

  • Budyko, M. I., 1974: Climate and Life. Academic Press, 508 pp.

  • Burnash, R. J. C., Ferral R. L. , and McGuire R. A. , 1973: A generalized streamflow simulation system: Conceptual modeling for digital computers. U.S. Department of Commerce, National Weather Service, and State of California, Department of Water Resources Rep., 204 pp.

  • Buytaert, W., Célleri R. , and Timbe L. , 2009: Predicting climate change impacts on water resources in the tropical Andes: Effects of GCM uncertainty. Geophys. Res. Lett., 36, L07406, doi:10.1029/2008GL037048.

    • Search Google Scholar
    • Export Citation
  • Cai, W., Sullivan A. , and Cowan T. , 2009: Rainfall teleconnections with Indo–Pacific variability in the IPCC AR4 models. J. Climate, 22, 50465071.

    • Search Google Scholar
    • Export Citation
  • Cai, W., van Rensch P. , Cowan T. , and Sullivan A. , 2010: Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact. J. Climate, 23, 49444955.

    • Search Google Scholar
    • Export Citation
  • Cai, W., Cowan T. , Sullivan J. , Ribbe A. J. , and Shi G. , 2011: Are anthropogenic aerosols responsible for the northwest Australia summer rainfall increase? A CMIP3 perspective and implications. J. Climate, 24, 25562564.

    • Search Google Scholar
    • Export Citation
  • Camkin, J. K., Bristow K. L. , Petheram C. , Paydar Z. , Cook J. , and Story J. , 2008: Designs for the future: The role of sustainable irrigation in northern Australia. Sustainable Irrigation: Management Technologies and Policies II, Y. Villacampa Estve, C. A. Brebbia, and D. Prats Rico, Eds., WIT Press, 293–302.

  • Chiew, F., 2006: Estimation of rainfall elasticity in streamflow in Australia. Hydrol. Sci., 51, 613625.

  • Chiew, F., and McMahon T. A. , 2002: Modelling the impacts of climate change on Australian streamflow. Hydrol. Processes, 16, 12351245.

    • Search Google Scholar
    • Export Citation
  • Chiew, F., Peel M. C. , and Western A. W. , 2002: Application and testing of the simple rainfall-runoff model SIMHYD. Mathematical Models of Small Watershed Hydrology and Applications, V. P. Singh and D. K. Frevert, Eds., Water Resources Publ., 335–367.

  • Chiew, F., Peel M. C. , McMahon T. A. , and Siriwardena L. W. , 2006: Precipitation elasticity of streamflow in catchments across the world. Climate variability and change—Hydrological impacts, IAHS Publ. 308, 256–262.

  • Chiew, F., Kirono D. G. C. , Kent D. , and Vaze J. , 2009a: Assessment of rainfall simulations from global climate models and implications for climate change impacts on runoff studies. Proc. 18th World IMACS Congress and MODSIM09 Int. Congress on Modelling and Simulation, Cairns, Queensland, Australia, Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation, 3907–3913.

  • Chiew, F., Teng J. , Vaze J. , Post D. A. , Perraud J.-M. , Kirono D. G. C. , and Viney N. R. , 2009b: Estimating climate change impact on runoff across southeast Australia: Method, results, and implications of the modeling method. Water Resour. Res., 45, W10414, doi:10.1029/2008WR007338.

    • Search Google Scholar
    • Export Citation
  • Chiew, F., Kirono D. G. C. , Kent D. M. , Frost A. J. , Charles S. P. , Timbal B. , Nguyen K. C. , and Fu G. , 2010: Comparison of runoff modelled using rainfall from different downscaling methods for historical and future climates. J. Hydrol., 387 (1–2), 1023.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397.

  • Croke, B. F. W., Andrews F. , Jakeman A. J. , Cuddy S. M. , and Luddy A. , 2006: IHACRES Classic Plus: A redesign of the IHACRES rainfall-runoff model. Environ. Modell. Software, 21, 426427.

    • Search Google Scholar
    • Export Citation
  • CSIRO, 2009a: Water in the Gulf of Carpentaria drainage division. CSIRO Northern Australia Sustainable Yields Project Tech. Rep., 479 pp. [Available online at http://www.csiro.au/resources/Gulf-of-Carpentaria-Drainage-Division-Report-NASY.html.]

  • CSIRO, 2009b: Water in the Timor Sea drainage division. CSIRO Northern Australia Sustainable Yields Project Tech. Rep., 548 pp. [Available online at http://www.csiro.au/resources/Timor-Sea-Drainage-Division-Report-NASY.html.]

  • Dibike, Y., and Coulibaly P. , 2007: Validation of hydrological models for climate scenario simulation: The case of Saguenay watershed in Quebec. Hydrol. Processes, 21, 31233135.

    • Search Google Scholar
    • Export Citation
  • Donohue, R. J., McVicar T. R. , and Roderick M. L. , 2010: Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J. Hydrol., 386, 186197.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. M., Bunn S. E. , and Davies P. M. , 2005: River and wetland food webs in Australia’s wet–dry tropics: General principles and implications for management. Mar. Freshwater Res., 56, 329342.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., Gupta V. K. , and Sorooshian S. , 1993: A shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl., 76, 501521.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., Blenkinsop S. , and Tebaldi C. , 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578.

    • Search Google Scholar
    • Export Citation
  • Gosling, S. N., and Arnell N. W. , 2011: Simulating current global river runoff with a global hydrological model: Model revisions, validation, and sensitivity analysis. Hydrol. Processes, 25, 11291145.

    • Search Google Scholar
    • Export Citation
  • Gosling, S. N., Bretherton D. , Haines K. , and Arnell N. W. , 2010: Global hydrology modelling and uncertainty: Running multiple ensembles with a campus grid. Philos. Trans. Roy. Soc. London, A368, 40054021, doi:10.1098/rsta.2010.0164.

    • Search Google Scholar
    • Export Citation
  • Gosling, S. N., Taylor R. G. , Arnell N. W. , and Todd M. C. , 2011: A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrol. Earth Syst. Sci., 15, 279294.

    • Search Google Scholar
    • Export Citation
  • Goswami, M., O’Connor K. M. , and Shamseldin A. Y. , 2002: Structures and performances of five rainfall-runoff models for continuous river-flow simulation. Proc. First Biennial Meeting of Int. Environmental Modelling and Software Society, Lugano, Switzerland, University of Lugano, 476–481.

  • Grayson, R. B., Moore I. D. , and McMahon T. A. , 1992: Physically based hydrologic modeling. 2. Is the concept realistic? Water Resour. Res., 28, 26592666.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., Scoccimarro E. , and Navarra A. , 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21, 52045228.

    • Search Google Scholar
    • Export Citation
  • Hamilton, S. K., Bunn S. E. , Thoms M. C. , and Marshall J. C. , 2005: Persistence of aquatic refugia between flow pulses in a dryland river system (Cooper Creek, Australia). Limnol. Oceanogr., 50, 743754.

    • Search Google Scholar
    • Export Citation
  • Hughes, D. A., 1995: Monthly rainfall-runoff models applied to arid and semi-arid catchments for water resource estimation purposes. Hydrol. Sci. J., 40, 751769.

    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319 (1–4), 8395.

    • Search Google Scholar
    • Export Citation
  • Hutchinson, M. F., Stein J. , Anderson A. , and Tickle P. H. , 2008: GEODATA 9 second DEM and D8 user guide. Geoscience Australia, 43 pp. [Available online at http://www.ga.gov.au/image_cache/GA11644.pdf.]

  • Ikema, T., Bigg G. R. , and Bryant R. G. , 2010: Increasing rain intensity over Okinawa, 1982–2005, and the link to changes in characteristics of northwest Pacific typhoons. J. Geophys. Res., 115, D24121, doi:10.1029/2010JD014428.

    • Search Google Scholar
    • Export Citation
  • Jackson, I. J., 1988: Daily rainfall over northern Australia: Deviations from the world pattern. J. Climatol., 8, 463476.

  • Jeffrey, S. J., Carter J. O. , Moodie K. M. , and Beswick A. R. , 2001: Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Modell. Software, 16, 309330.

    • Search Google Scholar
    • Export Citation
  • Kim, H. S., Croke B. F. W. , Jakeman A. J. , and Chiew F. H. S. , 2009: Towards model adequacy for identifying the impacts of climate and land use on catchment hydrology. Proc. 18th World IMACS Congress and MODSIM09 Int. Congress on Modelling and Simulation, Cairns, QLD, Australia, Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation, 3393–3399.

  • Körner, C., 2006: Plant CO2 responses: An issue of definition, time and resource supply. New Phytol., 172, 393411.

  • Kundzewicz, Z. W., and Stakhiv E. Z. , 2010: Are climate models “ready for prime time” in water resources management applications, or is more research needed? Hydrol. Sci. J., 55, 10851089.

    • Search Google Scholar
    • Export Citation
  • Lamontagne, S., Cook P. G. , O’Grady A. P. , and Eamus D. , 2005: Groundwater use by vegetation in a tropical savanna riparian zone (Daly River, Australia). J. Hydrol., 310, 280293.

    • Search Google Scholar
    • Export Citation
  • Lee, H., McIntyre N. , Wheater H. , and Young A. , 2005: Selection of conceptual models for regionalisation of the rainfall-runoff relationship. J. Hydrol., 312, 125147.

    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2009: Climate data and their characterisation for hydrological scenario modelling across northern Australia. CSIRO Northern Australia Sustainable Yields Project Tech. Rep., 63 pp. [Available online at http://www.clw.csiro.au/publications/waterforahealthycountry/nasy/documents/TechReports/NASY-climate-data-characterisation.pdf.]

  • Manabe, S., Milly P. C. D. , and Wetherald R. , 2004: Simulated long-term changes in river discharge and soil moisture due to global warming. Hydrol. Sci. J., 49, 625642.

    • Search Google Scholar
    • Export Citation
  • McJannet, D., Wallace J. , Henderson A. , and McMahon J. , 2009: High and low flow regime changes at environmental assets across northern Australia under future climate and development scenarios. CSIRO Northern Australia Sustainable Yields Project Tech. Rep., 125 pp. [Available online at http://www.clw.csiro.au/publications/waterforahealthycountry/nasy/documents/TechReports/NASY-flow-regime-changes-environmental.pdf.]

  • McMahon, T. A., Vogel R. M. , Peel M. C. , and Pegram G. G. S. , 2007: Global streamflows—Part 1: Characteristics of annual streamflows. J. Hydrol., 347 (3–4), 243259.

    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., Van Niel T. G. , Li L. T. , Roderick M. L. , Rayner D. P. , Ricciardulli L. , and Donohue R. J. , 2008: Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys. Res. Lett., 35, L20403, doi:10.1029/2008GL035627.

    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., and Coauthors, 2012: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implication for evaporation. J. Hydrol., 416–417, 182205.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., Betancourt J. , Falkenmark M. , Hirsch R. M. , Kundzewicz Z. W. , Lettenmaier D. P. , and Stouffer R. J. , 2008: Stationarity is dead: Whither water management? Science, 319, 573574.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., 2003: Pattern scaling: An examination of the accuracy of the technique for describing future climates. Climatic Change, 60, 217242.

    • Search Google Scholar
    • Export Citation
  • Morton, F. I., 1983: Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J. Hydrol., 66, 176.

    • Search Google Scholar
    • Export Citation
  • Mwakalila, S., 2003: Estimation of stream flows of ungauged catchments for river basin management. Phys. Chem. Earth, 28, 935942.

  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., O’Donnell G. M. , Hamlet A. F. , and Lettenmaier D. P. , 2001: Hydrologic sensitivity of global rivers to climate change. Climatic Change, 50 (1–2), 143175.

    • Search Google Scholar
    • Export Citation
  • NLWRA, cited 2006: Water—Australian water resources assessment 2000. [Available online at http://www.anra.gov.au/topics/water/pubs/national/water_contents.html.]

  • Northern Australia Land and Water Taskforce, 2009: Northern Australia land and water science review 2009. Northern Australia Land and Water Taskforce Final Rep. [Available online at http://www.nalwt.gov.au/science_review.aspx.]

  • Oudin, L., Hervieu F. , Michel C. , Perrin C. , Andréassian V. , Anctil F. , and Loumagne C. , 2005: Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol., 303 (1–4), 290306.

    • Search Google Scholar
    • Export Citation
  • Pall, P., Allen M. R. , and Stone D. A. , 2007: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351363.

    • Search Google Scholar
    • Export Citation
  • Peel, M. C., Finlayson B. L. , and McMahon T. A. , 2007: Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., Vautard R. , McVicar T. R. , Thépaut J.-N. , and Berrisford P. , 2011: Surface winds over land [in “State of the Climate in 2010”]. Bull. Amer. Meteor. Soc., 92 (6), S57.

    • Search Google Scholar
    • Export Citation
  • Petheram, C., and Bristow K. L. , 2008: Towards an understanding of the hydrological factors, constraints and opportunities for irrigation in northern Australia: A review. CSIRO Land and Water Science Rep. 13/08 and CRC for Irrigation Futures Tech. Rep. 06/08, 111 pp. [Available online at http://www.clw.csiro.au/publications/science/2008/sr13-08.pdf.]

  • Petheram, C., McMahon T. A. , and Peel M. C. , 2008: Flow characteristics of rivers in northern Australia: Implications for development. J. Hydrol., 357 (1–2), 93111.

    • Search Google Scholar
    • Export Citation
  • Petheram, C., Hughes D. , Rustomji P. , Smith K. , Van Neil T. G. , and Yang A. , 2009a: River modelling for Northern Australia. CSIRO Northern Australian Sustainable Yields Project Tech. Rep., CSIRO Water for a Healthy Country Flagship, Australia, 125 pp. [Available online at http://www.clw.csiro.au/publications/waterforahealthycountry/nasy/documents/TechReports/NASY-river-modelling.pdf.]

  • Petheram, C., Rustomji P. , and Vleeshouwer J. , 2009b: Rainfall-runoff modeling across northern Australia. CSIRO Northern Australia Sustainable Yields Project Tech. Rep., CSIRO Water for a Healthy Country Flagship, Australia, 119 pp. [Available online at http://www.clw.csiro.au/publications/waterforahealthycountry/nasy/documents/TechReports/NASY-rainfall-runoff-modelling.pdf.]

  • Petheram, C., McMahon T. A. , Peel M. C. , and Smith C. J. , 2010: A continental scale assessment of Australia’s potential for irrigation. Water Resour. Manage., 24, 17911817.

    • Search Google Scholar
    • Export Citation
  • Petheram, C., Rustomji P. , Chiew F. H. S. , and Vleeshouwer J. , 2012: Rainfall-runoff modelling in northern Australia: A guide to modelling strategies in the tropics. J. Hydrol., doi:10.1016/j.jhydrol.2011.12.046, in press.

    • Search Google Scholar
    • Export Citation
  • Petrone, K. C., Hughes J. D. , Van Niel T. G. , and Silberstein R. P. , 2010: Streamflow decline in southwestern Australia, 1950–2008. Geophys. Res. Lett., 37, L11401, doi:10.1029/2010GL043102.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1989: El Niño, La Niña, and the Southern Oscillation. Academic Press, 289 pp.

  • PMC, 2007: A national plan for water security. Department of the Prime Minister and Cabinet Rep., 22 pp.

  • Preston, B. L., and Jones R. , 2008: A national assessment of the sensitivity of Australia runoff to climate change. Atmos. Sci. Lett., 9, 202208, doi:10.1002/asl.188.

    • Search Google Scholar
    • Export Citation
  • Prudhomme, C., and Davies H. , 2009: Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 1: Baseline climate. Climatic Change, 93 (1–2), 177195.

    • Search Google Scholar
    • Export Citation
  • Rind, D., 2008: The consequences of not knowing low-and high-latitude climate sensitivity. Bull. Amer. Meteor. Soc., 89, 855864.

  • Rosenbrock, H. H., 1960: An automatic method for finding the greatest or least value of a function. Comput. J., 3, 175184.

  • Rudolf, B., Becker A. , Schneider U. , Meyer-Christoffer A. , and Ziese M. , 2010: The new “GPCC Full Data Reanalysis Version 5” providing high-quality gridded monthly precipitation data for the global land-surface is public available since December 2010. GPCC Status Rep., 7 pp. [Available online at http://www.dwd.de/bvbw/generator/DWDWWW/Content/Oeffentlichkeit/KU/KU4/KU42/en/Reports__Publications/­GPCC__status__report__2010,templateId=raw,property=publicationFile.pdf/GPCC_status_report_2010.pdf.]

  • Salathé, E. P., Jr., 2003: Comparison of various precipitation downscaling methods for the simulation of streamflow in a rainshadow river basin. Int. J. Climatol., 23, 887901.

    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., 1990: From climate to flow. Climate Change and U.S. Water Resources, P. E. Waggoner, Ed., John Wiley, 177–206.

  • Segui, P. Q., Ribes A. , Martin E. , Habets F. , and Boe J. , 2010: Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of Mediterranean basins. J. Hydrol., 383 (1–2), 111124.

    • Search Google Scholar
    • Export Citation
  • Servat, E., and Dezetter A. , 1993: Rainfall-runoff modelling and water resources assessment in northwestern Ivory Coast. Tentative extension to ungauged catchments. J. Hydrol., 148, 231248.

    • Search Google Scholar
    • Export Citation
  • Shi, G., Ribbe J. , Cai W. , and Cowan T. , 2008: An interpretation of Australian rainfall projections. Geophys. Res. Lett., 35, L02702, doi:10.1029/2007GL032436.

    • Search Google Scholar
    • Export Citation
  • SKM, 2009: Regionalisation of hydrologic indices. Northern Australia Sustainable Yield Project Rep., 185 pp.

  • Solomon, S., Qin D. , Manning M. , Marquis M. , Averyt K. , Tignor M. M. B. , Miller H. L. Jr., and Chen Z. , Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Thomas, H. A., 1981: Improved methods for national water assessment. U.S. Water Resources Council Rep. WR 15249270.

  • Todd, M. C., Taylor R. G. , Osborn T. J. , Kingston D. G. , Arnell N. W. , and Gosling S. N. , 2011: Uncertainty in climate change impacts on basin-scale freshwater resources—Preface to the special issue: The QUEST-GSI methodology and synthesis of results. Hydrol. Earth Syst. Sci., 15, 10351046, doi:10.5194/hess-15-1035-2011.

    • Search Google Scholar
    • Export Citation
  • Townsend, S. A., and Padovan A. V. , 2005: The seasonal accrual and loss of benthic algae (Spirogyra) in the Daly River, an oligotrophic river in tropical Australia. Mar. Freshwater Res., 56, 317327.

    • Search Google Scholar
    • Export Citation
  • UNESCO, 2009: Water in a changing world. United Nations World Water Development Rep. 3, 349 pp. [Available online at http://www.unesco.org/water/wwap/wwdr/wwdr3/pdf/WWDR3_Water_in_a_Changing_World.pdf.]

  • Vaze, J., Davidson A. , Teng J. , and Podger G. , 2011: Impact of climate change on water availability in the Macquarie–Castlereagh River Basin in Australia. Hydrol. Processes, 25, 25972612, doi:10.1002/hyp.8030.

    • Search Google Scholar
    • Export Citation
  • Viney, N. R., Perraud J.-M. , Vaze J. , Chiew F. H. S. , Post D. A. , and Yang A. , 2009: The usefulness of bias constraints in model calibration for regionalisation to ungauged catchments. Proc. 18th World IMACS Congress and MODSIM09 Int. Congress on Modelling and Simulation, Cairns, Queensland, Australia, Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation, 3421–3427.

  • Wallace, J. S., 1995: Calculating evaporation: Resistance to factors. Agric. For. Meteor., 73 (3–4), 353366.

  • Webster, I. T., Rea N. , Padovan A. V. , Dostine P. , Townsend S. A. , and Cook S. , 2005: An analysis of primary production in the Daly River, a relatively unimpacted tropical river in northern Australia. Mar. Freshwater Res., 56, 303316.

    • Search Google Scholar
    • Export Citation
  • Whetton, P. H., Hennessy K. J. , Katzfey J. J. , McGregor J. L. , Jones R. N. , and Nguye K. , 2000: Climate averages and variability based on a transient CO2 simulation. Department of Natural Resources and Environment Annual Rep. 1997-98, 38 pp. [Available online at http://www.climatechange.vic.gov.au/__data/assets/pdf_file/0020/73217/ClimatechangeinVictoria1998.pdf.]

  • Whetton, P. H., McInnes K. L. , Jones R. N. , Hennessy K. J. , Suppiah R. , Page C. M. , Bathols J. , and Durack P. J. , 2005: Australian climate change projections for impact assessment and policy application: A review. CSIRO Marine and Atmospheric Research Paper 001, 36 pp. [Available online at http://www.cmar.csiro.au/e-print/open/whettonph_2005a.pdf.]

  • WMO, 1996: The adequacy of hydrological networks: A global assessment. World Meteorological Organization Tech. Rep. HWR-52, WMO-740, 56 pp.

  • Xu, C.-Y., 1999: Climate change and hydrologic models: A review of existing gaps and recent research developments. Water Resour. Manage., 13, 369382.

    • Search Google Scholar
    • Export Citation
  • Xu, C.-Y., and Singh V. P. , 1998: A review of monthly water balance models for water resource investigations. Water Resour. Manage., 12, 3150.

    • Search Google Scholar
    • Export Citation
  • Yapo, P. O., Gupta H. V. , and Sorooshian S. , 1996: Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data. J. Hydrol., 181 (1–4), 2348.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., Dawes W. R. , and Walker G. R. , 2001: Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res., 37, 701708.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1212 661 13
PDF Downloads 317 59 4