Complexity of Snow Schemes in a Climate Model and Its Impact on Surface Energy and Hydrology

Emanuel Dutra Centro de Geofísica da Universidade de Lisboa, Instituto Dom Luiz, University of Lisbon, Lisbon, Portugal, and Institute for Atmospheric and Climate Science, ETH, Zurich, Switzerland

Search for other papers by Emanuel Dutra in
Current site
Google Scholar
PubMed
Close
,
Pedro Viterbo Institute of Meteorology, and Centro de Geofísica da Universidade de Lisboa, Instituto Dom Luiz, University of Lisbon, Lisbon, Portugal

Search for other papers by Pedro Viterbo in
Current site
Google Scholar
PubMed
Close
,
Pedro M. A. Miranda Centro de Geofísica da Universidade de Lisboa, Instituto Dom Luiz, University of Lisbon, Lisbon, Portugal

Search for other papers by Pedro M. A. Miranda in
Current site
Google Scholar
PubMed
Close
, and
Gianpaolo Balsamo European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Gianpaolo Balsamo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Three different complexity snow schemes implemented in the ECMWF land surface scheme Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) are evaluated within the EC-EARTH climate model. The snow schemes are (i) the original HTESSEL single-bulk-layer snow scheme, (ii) a new snow scheme in operations at ECMWF since September 2009, and (iii) a multilayer version of the previous. In offline site simulations, the multilayer scheme outperforms the single-layer schemes in deep snowpack conditions through its ability to simulate sporadic melting events thanks to the lower thermal inertial of the uppermost layer. Coupled atmosphere–land/snow simulations performed by the EC-EARTH climate model are validated against remote sensed snow cover and surface albedo. The original snow scheme has a systematic early melting linked to an underestimation of surface albedo during spring that was partially reduced with the new snow schemes. A key process to improve the realism of the near-surface atmospheric temperature and at the same time the soil freezing is the thermal insulation of the snowpack (tightly coupled with the accuracy of snow mass and density simulations). The multilayer snow scheme outperforms the single-layer schemes in open deep snowpack (such as prairies or tundra in northern latitudes) and is instead comparable in shallow snowpack conditions. However, the representation of orography in current climate models implies limitations for accurately simulating the snowpack, particularly over complex terrain regions such as the Rockies and the Himalayas.

Corresponding author address: Emanuel Dutra, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading RG2 9AX, United Kingdom. E-mail: emanuel.dutra@ecmwf.int

Current affiliation: European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom.

Abstract

Three different complexity snow schemes implemented in the ECMWF land surface scheme Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) are evaluated within the EC-EARTH climate model. The snow schemes are (i) the original HTESSEL single-bulk-layer snow scheme, (ii) a new snow scheme in operations at ECMWF since September 2009, and (iii) a multilayer version of the previous. In offline site simulations, the multilayer scheme outperforms the single-layer schemes in deep snowpack conditions through its ability to simulate sporadic melting events thanks to the lower thermal inertial of the uppermost layer. Coupled atmosphere–land/snow simulations performed by the EC-EARTH climate model are validated against remote sensed snow cover and surface albedo. The original snow scheme has a systematic early melting linked to an underestimation of surface albedo during spring that was partially reduced with the new snow schemes. A key process to improve the realism of the near-surface atmospheric temperature and at the same time the soil freezing is the thermal insulation of the snowpack (tightly coupled with the accuracy of snow mass and density simulations). The multilayer snow scheme outperforms the single-layer schemes in open deep snowpack (such as prairies or tundra in northern latitudes) and is instead comparable in shallow snowpack conditions. However, the representation of orography in current climate models implies limitations for accurately simulating the snowpack, particularly over complex terrain regions such as the Rockies and the Himalayas.

Corresponding author address: Emanuel Dutra, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading RG2 9AX, United Kingdom. E-mail: emanuel.dutra@ecmwf.int

Current affiliation: European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom.

Save
  • Anderson, E. A., 1976: A point energy and mass balance model of a snow cover. NOAA Tech. Rep. NWQ 19, 150 pp.

  • Armstrong, R. L., and Brodzik M. J. , 2007: Northern Hemisphere EASE-Grid weekly snow cover and sea ice extent version 3. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0046.html.]

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Viterbo P. , Beljaars A. , Van den Hurk B. , Betts A. K. , and Scipal K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeor., 10, 623643.

    • Search Google Scholar
    • Export Citation
  • Bartlett, M. G., Chapman D. S. , and Harris R. N. , 2004: Snow and the ground temperature record of climate change. J. Geophys. Res., 109, F04008, doi:10.1029/2004JF000224.

    • Search Google Scholar
    • Export Citation
  • Bartlett, M. G., Chapman D. S. , and Harris R. N. , 2005: Snow effect on North American ground temperatures, 1950–2002. J. Geophys. Res., 110, F03008, doi:10.1029/2005JF000293.

    • Search Google Scholar
    • Export Citation
  • Bartlett, P. A., MacKay M. D. , and Verseghy D. L. , 2006: Modified snow algorithms in the Canadian land surface scheme: Model runs and sensitivity analysis at three boreal forest stands. Atmos.–Ocean, 44, 207222, doi:10.3137/ao.440301.

    • Search Google Scholar
    • Export Citation
  • Bernier, N. B., Belair S. , Bilodeau B. , and Tong L. , 2011: Near-surface and land surface forecast system of the Vancouver 2010 Winter Olympic and Paralympic Games. J. Hydrometeor., 12, 508530.

    • Search Google Scholar
    • Export Citation
  • Boone, A., and Etchevers P. , 2001: An intercomparison of three snow schemes of varying complexity coupled to the same land surface model: Local-scale evaluation at an Alpine site. J. Hydrometeor., 2, 374394.

    • Search Google Scholar
    • Export Citation
  • Brun, E., Martin E. , Simon V. , Gendre C. , and Coleou C. , 1989: An energy and mass model of snow cover suitable for operational avalanche forecasting. J. Glaciol., 35, 333342.

    • Search Google Scholar
    • Export Citation
  • Brun, E., Yang Z. , Essery R. , and Cohen J. , 2008: Snow-cover parameterization and modeling. Snow and Climate, R. L. Armstrong and E. Brun, Eds., Cambridge University Press, 125–180.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Potter G. L. , 1988: A methodology for understanding and intercomparing atmospheric climate feedback processes in general circulation models. J. Geophys. Res., 93 (D7), 83058314, doi:10.1029/JD093iD07p08305.

    • Search Google Scholar
    • Export Citation
  • Choi, G., Robinson D. A. , and Kang S. , 2010: Changing Northern Hemisphere snow seasons. J. Climate, 23, 53055310.

  • Cook, B. I., Bonan G. B. , Levis S. , and Epstein H. E. , 2008: The thermoinsulation effect of snow cover within a climate model. Climate Dyn., 31, 107124.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Douville, H., Royer J. F. , and Mahfouf J. F. , 1995: A new snow parameterization for the Meteo-France climate model. 1. Validation in stand-alone experiments. Climate Dyn., 12, 2135.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., Balsamo G. , Viterbo P. , Miranda P. M. A. , Beljaars A. , Schar C. , and Elder K. , 2010: An improved snow scheme for the ECMWF land surface model: Description and offline validation. J. Hydrometeor., 11, 899916.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., Kotlarski S. , Viterbo P. , Balsamo G. , Miranda P. M. A. , Schär C. , Bissolli P. , and Jonas T. , 2011a: Snow cover sensitivity to horizontal resolution, parameterizations and atmospheric forcing in a land surface model. J. Geophys. Res., 116, D21109, doi:10.1029/2011JD016061.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., Schär C. , Viterbo P. , and Miranda P. M. A. , 2011b: Land-atmosphere coupling associated with snow cover. Geophys. Res. Lett., 38, L15707, doi:10.1029/2011gl048435.

    • Search Google Scholar
    • Export Citation
  • ECMWF, cited 2011: IFS Documentation CY28r1 IV: Physical processes. [Available online at http://www.ecmwf.int/research/ifsdocs/CY28r1/Physics/index.html.]

    • Search Google Scholar
    • Export Citation
  • Etchevers, P., and Coauthors, 2004: Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project). Ann. Glaciol., 38, 150158, doi:10.3189/172756404781814825.

    • Search Google Scholar
    • Export Citation
  • Ge, Y., and Gong G. , 2010: Land surface insulation response to snow depth variability. J. Geophys. Res., 115, D08107, doi:10.1029/2009JD012798.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., Karl T. R. , Knight R. W. , and Stenchikov G. L. , 1994: Changes of snow cover, temperature, and radiative heat balance over the Northern Hemisphere. J. Climate, 7, 16331656.

    • Search Google Scholar
    • Export Citation
  • Hall, A., and Qu X. , 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett., 33, L03502, doi:10.1029/2005gl025127.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and Coauthors, 2010: EC-Earth: A seamless earth-system prediction approach in action. Bull. Amer. Meteor. Soc., 91, 13571363.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , and Gu G. , 2009: Improving the global precipitation record: GPCP Version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009gl040000.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., van Beek L. P. H. , and Bierkens M. F. P. , 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, doi:10.1126/science.1183188.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 2004: Representing subgrid snow cover heterogeneities in regional and global models. J. Climate, 17, 13811397.

  • Lynch-Stieglitz, M., 1994: The development and validation of a simple snow model for the GISS GCM. J. Climate, 7, 18421855.

  • Marks, D., Reba M. , Pomeroy J. , Link T. , Winstral A. , Flerchinger G. , and Elder K. , 2008: Comparing simulated and measured sensible and latent heat fluxes over snow under a pine canopy to improve an energy balance snowmelt model. J. Hydrometeor., 9, 15061522.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., Durran D. R. , and Roe G. H. , 2011: Mesoscale controls on the mountainside snow line. J. Atmos. Sci., 68, 21072127.

  • Mitchell, T. D., and Jones P. D. , 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712.

    • Search Google Scholar
    • Export Citation
  • Qu, X., and Hall A. , 2006: Assessing snow albedo feedback in simulated climate change. J. Climate, 19, 26172630.

  • Rangwala, I., Miller J. R. , Russell G. L. , and Xu M. , 2010: Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century. Climate Dyn., 34, 859872, doi:10.1007/s00382-009-0564-1.

    • Search Google Scholar
    • Export Citation
  • Roesch, A., 2006: Evaluation of surface albedo and snow cover in AR4 coupled climate models. J. Geophys. Res., 111, D15111, doi:10.1029/2005jd006473.

    • Search Google Scholar
    • Export Citation
  • Roman, M. O., and Coauthors, 2009: The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes. Remote Sens. Environ., 113, 24762498.

    • Search Google Scholar
    • Export Citation
  • Rutter, N., and Coauthors, 2009: Evaluation of forest snow processes models (SnowMIP2). J. Geophys. Res., 114, D06111, doi:10.1029/2008JD011063.

    • Search Google Scholar
    • Export Citation
  • Salomon, J. G., Schaaf C. B. , Strahler A. H. , Gao F. , and Jin Y. F. , 2006: Validation of the MODIS Bidirectional Reflectance Distribution Function and Albedo retrievals using combined observations from the Aqua and Terra platforms. IEEE Trans. Geosci. Remote Sens., 44, 15551565.

    • Search Google Scholar
    • Export Citation
  • Schar, C., Luthi D. , Beyerle U. , and Heise E. , 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., Becker A. , Meyer-Christoffer A. , Ziese M. , and Rudolf B. , 2010: Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre DWD Tech. Rep., 12 pp. [Available online at http://gpcc.dwd.de.]

    • Search Google Scholar
    • Export Citation
  • Stieglitz, M., and Smerdon J. E. , 2007: Characterizing land–atmosphere coupling and the implications for subsurface thermodynamics. J. Climate, 20, 2137.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., Box J. E. , Gao F. , Liang S. L. , Nolin A. , and Schaaf C. , 2005: Accuracy assessment of the MODIS 16-day albedo product for snow: Comparisons with Greenland in situ measurements. Remote Sens. Environ., 94, 4660.

    • Search Google Scholar
    • Export Citation
  • Sun, S. F., Jin J. M. , and Xue Y. K. , 1999: A simple snow-atmosphere-soil transfer model. J. Geophys. Res., 104 (D16), 19 58719 597.

  • Sverdrup, H. U., 1935: Scientific results of the Norwegian-Swedish Spitsbergen expedition in 1934. Part IV. The ablation on Ischsen’s Plateau and on the 14th of July glacier. Geogr. Ann., 17, 145218.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Viterbo, P., and Betts A. K. , 1999: Impact on ECMWF forecasts of changes to the albedo of the boreal forests in the presence of snow. J. Geophys. Res., 104 (D22), 27 80327 810.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., Beljaars A. , Mahfouf J.-F. , and Teixeira J. , 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc., 125, 24012426, doi:10.1002/qj.49712555904.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Zeng X. B. , 2010: Evaluation of snow albedo in land models for weather and climate studies. J. Appl. Meteor. Climatol., 49, 363380.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Academic Press, 648 pp.

  • Williams, J., 1975: The influence of snowcover on the atmospheric circulation and its role in climatic change: An analysis based on results from the NCAR global circulation model. J. Appl. Meteor., 14, 137152.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., and Coauthors, 2003: Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model. J. Geophys. Res., 108, 4488, doi:10.1029/2002jd003326.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2108 1162 96
PDF Downloads 525 90 8