Comparing Large-Scale Hydrological Model Simulations to Observed Runoff Percentiles in Europe

Lukas Gudmundsson * Department of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by Lukas Gudmundsson in
Current site
Google Scholar
PubMed
Close
,
Lena M. Tallaksen * Department of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by Lena M. Tallaksen in
Current site
Google Scholar
PubMed
Close
,
Kerstin Stahl Institute of Hydrology, University of Freiburg, Freiburg, Germany

Search for other papers by Kerstin Stahl in
Current site
Google Scholar
PubMed
Close
,
Douglas B. Clark Centre for Ecology and Hydrology, Wallingford, United Kingdom

Search for other papers by Douglas B. Clark in
Current site
Google Scholar
PubMed
Close
,
Egon Dumont Centre for Ecology and Hydrology, Wallingford, United Kingdom

Search for other papers by Egon Dumont in
Current site
Google Scholar
PubMed
Close
,
Stefan Hagemann Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Stefan Hagemann in
Current site
Google Scholar
PubMed
Close
,
Nathalie Bertrand Laboratoire de Météorologie Dynamique, Paris, France

Search for other papers by Nathalie Bertrand in
Current site
Google Scholar
PubMed
Close
,
Dieter Gerten ** Potsdam Institute for Climate Impact Research, Potsdam, Germany

Search for other papers by Dieter Gerten in
Current site
Google Scholar
PubMed
Close
,
Jens Heinke ** Potsdam Institute for Climate Impact Research, Potsdam, Germany

Search for other papers by Jens Heinke in
Current site
Google Scholar
PubMed
Close
,
Naota Hanasaki National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Naota Hanasaki in
Current site
Google Scholar
PubMed
Close
,
Frank Voss Center for Environmental Systems Research, University of Kassel, Kassel, Germany

Search for other papers by Frank Voss in
Current site
Google Scholar
PubMed
Close
, and
Sujan Koirala Department of Mechanical and Environmental Informatics, Tokyo Institute of Technology, Yokohama, Japan

Search for other papers by Sujan Koirala in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Large-scale hydrological models describing the terrestrial water balance at continental and global scales are increasingly being used in earth system modeling and climate impact assessments. However, because of incomplete process understanding and limits of the forcing data, model simulations remain uncertain. To quantify this uncertainty a multimodel ensemble of nine large-scale hydrological models was compared to observed runoff from 426 small catchments in Europe. The ensemble was built within the framework of the European Union Water and Global Change (WATCH) project. The models were driven with the same atmospheric forcing data. Models were evaluated with respect to their ability to capture the interannual variability of spatially aggregated annual time series of five runoff percentiles—derived from daily time series—including annual low and high flows. Overall, the models capture the interannual variability of low, mean, and high flows well. However, errors in the mean and standard deviation, as well as differences in performance between the models, became increasingly pronounced for low runoff percentiles, reflecting the uncertainty associated with the representation of hydrological processes, such as the depletion of soil moisture stores. The large spread in model performance implies that any single model should be applied with caution as there is a great risk of biased conclusions. However, this large spread is contrasted by the good overall performance of the ensemble mean. It is concluded that the ensemble mean is a pragmatic and reliable estimator of spatially aggregated time series of annual low, mean, and high flows across Europe.

Corresponding author address: Lukas Gudmundsson, Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway. E-mail: lukas.gudmundsson@geo.uio.no

This article is included in the Water and Global Change (WATCH) special collection.

Abstract

Large-scale hydrological models describing the terrestrial water balance at continental and global scales are increasingly being used in earth system modeling and climate impact assessments. However, because of incomplete process understanding and limits of the forcing data, model simulations remain uncertain. To quantify this uncertainty a multimodel ensemble of nine large-scale hydrological models was compared to observed runoff from 426 small catchments in Europe. The ensemble was built within the framework of the European Union Water and Global Change (WATCH) project. The models were driven with the same atmospheric forcing data. Models were evaluated with respect to their ability to capture the interannual variability of spatially aggregated annual time series of five runoff percentiles—derived from daily time series—including annual low and high flows. Overall, the models capture the interannual variability of low, mean, and high flows well. However, errors in the mean and standard deviation, as well as differences in performance between the models, became increasingly pronounced for low runoff percentiles, reflecting the uncertainty associated with the representation of hydrological processes, such as the depletion of soil moisture stores. The large spread in model performance implies that any single model should be applied with caution as there is a great risk of biased conclusions. However, this large spread is contrasted by the good overall performance of the ensemble mean. It is concluded that the ensemble mean is a pragmatic and reliable estimator of spatially aggregated time series of annual low, mean, and high flows across Europe.

Corresponding author address: Lukas Gudmundsson, Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway. E-mail: lukas.gudmundsson@geo.uio.no

This article is included in the Water and Global Change (WATCH) special collection.

Save
  • Adam, J. C., and Lettenmaier D. P. , 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257, doi:10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Adam, J. C., Clark E. A. , Lettenmaier D. P. , and Wood E. F. , 2006: Correction of global precipitation products for orographic effects. J. Climate, 19, 1538.

    • Search Google Scholar
    • Export Citation
  • Alcamo, J., Petra Döll P. , Henrichs T. , Kaspar F. , Lehner B. , Roumlsch T. , and Siebert S. , 2003: Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J., 48, 317337, doi:10.1623/hysj.48.3.317.45290.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Beljaars A. , Scipal K. , Viterbo P. , van den Hurk B. , Hirschi M. , and Betts A. K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeor., 10, 623643.

    • Search Google Scholar
    • Export Citation
  • Barstad, I., Sorteberg A. , Flatø F. , and Déqué M. , 2009: Precipitation, temperature and wind in Norway: Dynamical downscaling of ERA40. Climate Dyn., 33, 769776, doi:10.1007/s00382-008-0476-5.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, doi:10.5194/gmd-4-677-2011.

    • Search Google Scholar
    • Export Citation
  • Bondeau, A., and Coauthors, 2007: Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol., 13, 679706, doi:10.1111/j.1365-2486.2006.01305.x.

    • Search Google Scholar
    • Export Citation
  • Bouwer, L. M., Vermaat J. E. , and Aerts J. C. J. H. , 2008: Regional sensitivities of mean and peak river discharge to climate variability in Europe. J. Geophys. Res., 113, D19103, doi:10.1029/2008JD010301.

    • Search Google Scholar
    • Export Citation
  • Carsel, R. F., and Parrish R. S. , 1988: Developing joint probability distributions of soil water retention characteristics. Water Resour. Res., 24, 755769.

    • Search Google Scholar
    • Export Citation
  • Clark, D. B., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev., 4, 701722, doi:10.5194/gmd-4-701-2011.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., Slater A. G. , Rupp D. E. , Woods R. A. , Vrugt J. A. , Gupta H. V. , Wagener T. , and Hay L. E. , 2008: Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models. Water Resour. Res., 44, W00B02, doi:10.1029/2007WR006735.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., Kavetski D. , and Fenicia F. , 2011a: Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resour. Res., 47, W09301, doi:10.1029/2010WR009827.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., McMillan H. K. , Collins D. B. G. , Kavetski D. , and Woods R. A. , 2011b: Hydrological field data from a modeller’s perspective: Part 2: Process-based evaluation of model hypotheses. Hydrol. Processes, 25, 523543, doi:10.1002/hyp.7902.

    • Search Google Scholar
    • Export Citation
  • Dankers, R., and Feyen L. , 2009: Flood hazard in Europe in an ensemble of regional climate scenarios. J. Geophys. Res., 114, D16108, doi:10.1029/2008JD011523.

    • Search Google Scholar
    • Export Citation
  • Decharme, B., and Douville H. , 2007: Global validation of the ISBA sub-grid hydrology. Climate Dyn., 29, 2137, doi:10.1007/s00382-006-0216-7.

    • Search Google Scholar
    • Export Citation
  • Di Baldassarre, G., and Montanari A. , 2009: Uncertainty in river discharge observations: A quantitative analysis. Hydrol. Earth Syst. Sci., 13, 913921, doi:10.5194/hess-13-913-2009.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: A history and review of the Global Soil Wetness Project (GSWP). J. Hydrometeor., 12, 729749.

  • Dirmeyer, P. A., Gao X. , Zhao M. , Guo Z. , Oki T. , and Hanasaki N. , 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811397.

    • Search Google Scholar
    • Export Citation
  • Döll, P., Kaspar F. , and Lehner B. , 2003: A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol., 270 (1–2), 105134, doi:10.1016/S0022-1694(02)00283-4.

    • Search Google Scholar
    • Export Citation
  • Döll, P., Fiedler K. , and Zhang J. , 2009: Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci., 13, 24132432.

    • Search Google Scholar
    • Export Citation
  • d’Orgeval, T., Polcher J. , and de Rosnay P. , 2008: Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes. Hydrol. Earth Syst. Sci., 12, 13871401, doi:10.5194/hess-12-1387-2008.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., and Coauthors, 2006: Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. J. Hydrol., 320 (1–2), 317, doi:10.1016/j.jhydrol.2005.07.031.

    • Search Google Scholar
    • Export Citation
  • Dümenil, L., and Todini E. , 1992: A rainfall-runoff scheme for use in the Hamburg climate model. Advances in Theoretical Hydrology: A Tribute to James Dooge, J. P. O’Kane, Ed., Elsevier Science, 129–157.

  • Fader, M., Rost S. , Müller C. , Bondeau A. , and Gerten D. , 2010: Virtual water content of temperate cereals and maize: Present and potential future patterns. J. Hydrol., 384 (3–4), 218231, doi:10.1016/j.jhydrol.2009.12.011.

    • Search Google Scholar
    • Export Citation
  • FAO, 2003: Digital soil map of the world and derived soil properties. Food and Agriculture Organization of the United Nations, CD-ROM.

  • Feyen, L., and Dankers R. , 2009: Impact of global warming on streamflow drought in Europe. J. Geophys. Res., 114, D17116, doi:10.1029/2008JD011438.

    • Search Google Scholar
    • Export Citation
  • Fuchs, T., 2009: GPCC Annual report for year 2008. Global Precipitation Climatology Centre Tech. Rep., DWD, 13 pp. [Available online at http://gpcc.dwd.de.]

  • Gao, X., and Dirmeyer P. A. , 2006: A multimodel analysis, validation, and transferability study of global soil wetness products. J. Hydrometeor., 7, 12181236.

    • Search Google Scholar
    • Export Citation
  • Gerten, D., Schaphoff S. , Haberlandt U. , Lucht W. , and Sitch S. , 2004: Terrestrial vegetation and water balance—Hydrological evaluation of a dynamic global vegetation model. J. Hydrol., 286 (1–4), 249270, doi:10.1016/j.jhydrol.2003.09.029.

    • Search Google Scholar
    • Export Citation
  • Gerten, D., Rost S. , von Bloh W. , and Lucht W. , 2008: Causes of change in 20th century global river discharge. Geophys. Res. Lett., 35, L20405, doi:10.1029/2008GL035258.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., Taylor K. E. , and Doutriaux C. , 2008: Performance metrics for climate models. J. Geophys. Res., 113, D06104, doi:10.1029/2007JD008972.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., Tallaksen L. M. , and Stahl K. , 2011a: Spatial cross-correlation patterns of European low, mean and high flows. Hydrol. Processes, 25, 10341045, doi:10.1002/hyp.7807.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., Tallaksen L. M. , Stahl K. , and Fleig A. K. , 2011b: Low-frequency variability of European runoff. Hydrol. Earth Syst. Sci., 15, 28532869, doi:10.5194/hess-15-2853-2011.

    • Search Google Scholar
    • Export Citation
  • Gulden, L. E., Rosero E. , Yang Z.-L. , Wagener T. , and Niu G.-Y. , 2008: Model performance, model robustness, and model fitness scores: A new method for identifying good land-surface models. Geophys. Res. Lett., 35, L11404, doi:10.1029/2008GL033721.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Dirmeyer P. A. , 2006: Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 1. Intermodel comparison. J. Geophys. Res., 111, D22S02, doi:10.1029/2006JD007233.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., Dirmeyer P. A. , Gao X. , and Zhao M. , 2007: Improving the quality of simulated soil moisture with a multi-model ensemble approach. Quart. J. Roy. Meteor. Soc., 133, 731747, doi:10.1002/qj.48.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., Wagener T. , and Liu Y. , 2008: Reconciling theory with observations: Elements of a diagnostic approach to model evaluation. Hydrol. Processes, 22, 38023813, doi:10.1002/hyp.6989.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., and Coauthors, 2011: Multimodel estimate of the global terrestrial water balance: Setup and first results. J. Hydrometeor., 12, 869884.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., Doblas-Reyes F. J. , and Palmer T. N. , 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus, 57A, 219233, doi:10.1111/j.1600-0870.2005.00103.x.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., and Dümenil L. , 1998: A parametrization of the lateral waterflow for the global scale. Climate Dyn., 14, 1731, doi:10.1007/s003820050205.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., and Dümenil Gates L. , 2003: Improving a subgrid runoff parameterization scheme for climate models by the use of high resolution data derived from satellite observations. Climate Dyn., 21, 349359, doi:10.1007/s00382-003-0349-x.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., and Jacob D. , 2007: Gradient in the climate change signal of European discharge predicted by a multi-model ensemble. Climatic Change, 81 (Suppl.), 309327, doi:10.1007/s10584-006-9225-0.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., Göttel H. , Jacob D. , Lorenz P. , and Roeckner E. , 2009: Improved regional scale processes reflected in projected hydrological changes over large European catchments. Climate Dyn., 32, 767781, doi:10.1007/s00382-008-0403-9.

    • Search Google Scholar
    • Export Citation
  • Hanasaki, N., Kanae S. , Oki T. , Masuda K. , Motoya K. , Shirakawa N. , Shen Y. , and Tanaka K. , 2008: An integrated model for the assessment of global water resources—Part 1: Model description and input meteorological forcing. Hydrol. Earth Syst. Sci., 12, 10071025.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., Sato M. , Ruedy R. , Lo K. , Lea D. W. , and Medina-Elizade M. , 2006: Global temperature change. Proc. Natl. Acad. Sci. USA, 103, 14 28814 293, doi:10.1073/pnas.0606291103.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., Pitman A. J. , Love P. K. , Irannejad P. , and Chen T. H. , 1995: The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3. Bull. Amer. Meteor. Soc., 76, 489503.

    • Search Google Scholar
    • Export Citation
  • Hirabayashi, Y., Kanae S. , Emori S. , Oki T. , and Kimoto M. , 2008: Global projections of changing risks of floods and droughts in a changing climate. Hydrol. Sci. J., 53, 754772.

    • Search Google Scholar
    • Export Citation
  • Hunger, M., and Döll P. , 2008: Value of river discharge data for global-scale hydrological modeling. Hydrol. Earth Syst. Sci., 12, 841861, doi:10.5194/hess-12-841-2008.

    • Search Google Scholar
    • Export Citation
  • Kavetski, D., Kuczera G. , and Franks S. W. , 2006: Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. Water Resour. Res., 42, W03407, doi:10.1029/2005WR004368.

    • Search Google Scholar
    • Export Citation
  • Laaha, G., and Blöschl G. , 2007: A national low flow estimation procedure for Austria. Hydrol. Sci. J., 52, 625644, doi:10.1623/hysj.52.4.625.

    • Search Google Scholar
    • Export Citation
  • Lehner, B., Döll P. , Alcamo J. , Henrichs T. , and Kaspar F. , 2006: Estimating the impact of global change on flood and drought risks in Europe: A continental, integrated analysis. Climatic Change, 75, 273299, doi:10.1007/s10584-006-6338-4.

    • Search Google Scholar
    • Export Citation
  • Macadam, I., Pitman A. J. , Whetton P. H. , and Abramowitz G. , 2010: Ranking climate models by performance using actual values and anomalies: Implications for climate change impact assessments. Geophys. Res. Lett., 37, L16704, doi:10.1029/2010GL043877.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and the ocean circulation. I. The atmospheric circulation and the hydrology of the earth’s surface. Mon. Wea. Rev., 97, 739774.

    • Search Google Scholar
    • Export Citation
  • Martinez, G. F., and Gupta H. V. , 2010: Toward improved identification of hydrological models: A diagnostic evaluation of the “abcd” monthly water balance model for the conterminous United States. Water Resour. Res., 46, W08507, doi:10.1029/2009WR008294.

    • Search Google Scholar
    • Export Citation
  • Materia, S., Dirmeyer P. A. , Guo Z. , Alessandri A. , and Navarra A. , 2010: The sensitivity of simulated river discharge to land surface representation and meteorological forcings. J. Hydrometeor., 11, 334351.

    • Search Google Scholar
    • Export Citation
  • McMillan, H., Freer J. , Pappenberger F. , Krueger T. , and Clark M. , 2010: Impacts of uncertain river flow data on rainfall-runoff model calibration and discharge predictions. Hydrol. Processes, 24, 12701284, doi:10.1002/hyp.7587.

    • Search Google Scholar
    • Export Citation
  • Meigh, J. R., McKenzie A. A. , and Sene K. J. , 1999: A grid-based approach to water scarcity estimates for eastern and southern Africa. Water Resour. Manage., 13, 85115, doi:10.1023/A:1008025703712.

    • Search Google Scholar
    • Export Citation
  • Merz, R., and Blöschl G. , 2009: Process controls on the statistical flood moments—A data based analysis. Hydrol. Processes, 23, 675696, doi:10.1002/hyp.7168.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., Dunne K. A. , and Vecchia A. V. , 2005: Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347350, doi:10.1038/nature04312.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and Jones P. D. , 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Moore, R. J., 1985: The probability-distributed principle and runoff production at point and basin scales. Hydrol. Sci. J., 30, 273297.

    • Search Google Scholar
    • Export Citation
  • Moore, R. J., 2007: The PDM rainfall-runoff model. Hydrol. Earth Syst. Sci., 11, 483499, doi:10.5194/hess-11-483-2007.

  • Nasonova, O. N., Gusev Ye. M. , and Kovalev Ye. E. , 2011: Impact of uncertainties in meteorological forcing data and land surface parameters on global estimates of terrestrial water balance components. Hydrol. Processes, 25, 10741090, doi:10.1002/hyp.7651.

    • Search Google Scholar
    • Export Citation
  • New, M., Hulme M. , and Jones P. , 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12, 829856.

    • Search Google Scholar
    • Export Citation
  • New, M., Hulme M. , and Jones P. , 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238.

    • Search Google Scholar
    • Export Citation
  • Nohara, D., Kitoh A. , Hosaka M. , and Oki T. , 2006: Impact of climate change on river discharge projected by multimodel ensemble. J. Hydrometeor., 7, 10761089.

    • Search Google Scholar
    • Export Citation
  • Oki, T., Nishimura T. , and Dirmeyer P. , 1999: Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). J. Meteor. Soc. Japan, 77, 235255.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Coauthors, 2004: Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853872.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., and Kim J. , 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303311.

  • Reitan, T., and Petersen-Øverleir A. , 2009: Bayesian methods for estimating multi-segment discharge rating curves. Stochastic Environ. Res. Risk Assess., 23, 627642, doi:10.1007/s00477-008-0248-0.

    • Search Google Scholar
    • Export Citation
  • Renard, B., Kavetski D. , Kuczera G. , Thyer M. , and Franks S. W. , 2010: Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resour. Res., 46, W05521, doi:10.1029/2009WR008328.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM 5. Part I: Model description. Max Planck Institute for Meteorology Tech. Rep. 349, 127 pp.

  • Rosero, E., Yang Z.-L. , Gulden L. E. , Niu G.-Y. , and Gochis D. J. , 2009: Evaluating enhanced hydrological representations in Noah LSM over transition zones: Implications for model development. J. Hydrometeor., 10, 600622.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., and Schneider U. , 2005: Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations. Proc. Second Workshop of the International Precipitation Working Group, Monterey, CA, IPWG, 231–247. [Available online at http://gpcc.dwd.de.]

  • Schneider, U., Becker A. , Meyer-Christoffer A. , Ziese M. , and Rudolf B. , 2010: Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre Tech. Rep., DWD, 12 pp. [Available online at ftp://ftp.dwd.de/pub/data/gpcc/PDF/GPCC_intro_products_2008.pdf.]

  • Shorthouse, C., and Arnell N. , 1997: Spatial and temporal variability in European river flows and the North Atlantic oscillation. FRIEND’97—Regional Hydrology: Concepts and Models for Sustainable Water Resource Management, A. Gustard et al., Eds., IAHS, 77–85.

  • Shorthouse, C., and Arnell N. , 1999: The effects of climatic variability on spatial characteristics of European river flows. Phys. Chem. Earth, 24B (1–2), 713, doi:10.1016/S1464-1909(98)00003-3.

    • Search Google Scholar
    • Export Citation
  • Smakhtin, V. U., 2001: Low flow hydrology: A review. J. Hydrol., 240 (3–4), 147186, doi:10.1016/S0022-1694(00)00340-1.

  • Stahl, K., Hisdal H. , Tallaksen L. , van Lanen H. , Hannaford J. , and Sauquet E. , 2008: Trends in low flows and streamflow droughts across Europe. UNESCO Tech. Rep., 39 pp.

  • Stahl, K., and Coauthors, 2010: Streamflow trends in Europe: Evidence from a dataset of near-natural catchments. Hydrol. Earth Syst. Sci. Discuss., 7, 57695804, doi:10.5194/hessd-7-5769-2010.

    • Search Google Scholar
    • Export Citation
  • Stahl, K., Tallaksen L. M. , Gudmundsson L. , and Christensen J. H. , 2011: Streamflow data from small basins: A challenging test to high-resolution regional climate modeling. J. Hydrometeor., 12, 900912.

    • Search Google Scholar
    • Export Citation
  • Takata, K., Emori S. , and Watanabe T. , 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38 (1–2), 209222, doi:10.1016/S0921-8181(03)00030-4.

    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., Uijlenhoet R. , van den Hurk B. , and Seneviratne S. I. , 2009: Parameter sensitivity in LSMs: An analysis using stochastic soil moisture models and ELDAS soil parameters. J. Hydrometeor., 10, 751765.

    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., and Seibert J. , 2010: Regional climate models for hydrological impact studies at the catchment scale: A review of recent modeling strategies. Geography Compass, 4, 834860, doi:10.1111/j.1749-8198.2010.00357.x.

    • Search Google Scholar
    • Export Citation
  • Todini, E., 1996: The ARNO rainfall–runoff model. J. Hydrol., 175 (1–4), 339382, doi:10.1016/S0022-1694(96)80016-3.

  • Troy, T. J., Wood E. F. , and Sheffield J. , 2008: An efficient calibration method for continental-scale land surface modeling. Water Resour. Res., 44, W09411, doi:10.1029/2007WR006513.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Vogt, J., and Coauthors, 2007: A pan-European river and catchment database. JRC Reference Rep. EUR 22920 EN, 119 pp.

  • Weedon, G. P., Gomes S. , Viterbo P. , Österle H. , Adam J. C. , Bellouin N. , Boucher O. , and Best M. , 2010: The WATCH forcing data 1958–2001: A meteorological forcing dataset for land surface- and hydrological-models. WATCH Tech. Rep. 22, 41 pp. [Available online at http://www.eu-watch.org.]

  • Weedon, G. P., and Coauthors, 2011: Creation of the WATCH Forcing Data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeor., 12, 823848.

    • Search Google Scholar
    • Export Citation
  • Whitehouse, I., McSaveney M. , and Horrell G. , 1983: Spatial variability of low flows across a portion of the central Southern Alps, New Zealand. J. Hydrol., 20, 123137.

    • Search Google Scholar
    • Export Citation
  • Widén-Nilsson, E., Gong L. , Halldin S. , and Xu C.-Y. , 2009: Model performance and parameter behavior for varying time aggregations and evaluation criteria in the WASMOD-M global water balance model. Water Resour. Res., 45, W05418, doi:10.1029/2007WR006695.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5451 3511 437
PDF Downloads 1188 219 15