A Global Intercomparison of Modeled and Observed Land–Atmosphere Coupling

Craig R. Ferguson Department of Hydrology and Water Resources Engineering, Institute of Industrial Science, University of Tokyo, Tokyo, Japan

Search for other papers by Craig R. Ferguson in
Current site
Google Scholar
PubMed
Close
,
Eric F. Wood Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Eric F. Wood in
Current site
Google Scholar
PubMed
Close
, and
Raghuveer K. Vinukollu Swiss Re, Armonk, New York

Search for other papers by Raghuveer K. Vinukollu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Land–atmosphere coupling strength or the degree to which land surface anomalies influence boundary layer development—and in extreme cases, rainfall—is arguably the single most fundamental criterion for evaluating hydrological model performance. The Global Land–Atmosphere Coupling Experiment (GLACE) showed that strength of coupling and its representation can affect a model’s ability to simulate climate predictability at the seasonal time scale. And yet, the lack of sufficient observations of coupling at appropriate temporal and spatial scales has made achieving “true” coupling in models an elusive goal. This study uses Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) soil moisture (SM), multisensor remote sensing (RS) evaporative fraction (EF), and Atmospheric Infrared Sounder (AIRS) lifting condensation level (LCL) to evaluate the realism of coupling in the Global Land Data Assimilation System (GLDAS) suite of land surface models (LSMs), Princeton Global Forcing Variable Infiltration Capacity model (PGF–VIC), seven global reanalyses, and the North American Regional Reanalysis (NARR) over a 5-yr period (2003–07). First, RS and modeled estimates of SM, EF, and LCL are intercompared. Then, emphasis is placed on quantifying RS and modeled differences in convective-season daily correlations between SM–LCL, SM–EF, and EF–LCL for global, regional, and conditional samples. RS is found to yield a substantially weaker state of coupling than model products. However, the rank order of basins by coupling strength calculated from RS and models do roughly agree. Using a mixture of satellite and modeled variables, a map of hybrid coupling strength was produced, which supports the findings of GLACE that transitional zones tend to have the strongest coupling.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-11-0119.s1.

Corresponding author address: Craig R. Ferguson, Ce407, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan. E-mail: cferguso@rainbow.iis.u-tokyo.ac.jp

This article is included in the Exchanges of Energy and Water at the Land-Atmosphere Interface special collection.

Abstract

Land–atmosphere coupling strength or the degree to which land surface anomalies influence boundary layer development—and in extreme cases, rainfall—is arguably the single most fundamental criterion for evaluating hydrological model performance. The Global Land–Atmosphere Coupling Experiment (GLACE) showed that strength of coupling and its representation can affect a model’s ability to simulate climate predictability at the seasonal time scale. And yet, the lack of sufficient observations of coupling at appropriate temporal and spatial scales has made achieving “true” coupling in models an elusive goal. This study uses Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) soil moisture (SM), multisensor remote sensing (RS) evaporative fraction (EF), and Atmospheric Infrared Sounder (AIRS) lifting condensation level (LCL) to evaluate the realism of coupling in the Global Land Data Assimilation System (GLDAS) suite of land surface models (LSMs), Princeton Global Forcing Variable Infiltration Capacity model (PGF–VIC), seven global reanalyses, and the North American Regional Reanalysis (NARR) over a 5-yr period (2003–07). First, RS and modeled estimates of SM, EF, and LCL are intercompared. Then, emphasis is placed on quantifying RS and modeled differences in convective-season daily correlations between SM–LCL, SM–EF, and EF–LCL for global, regional, and conditional samples. RS is found to yield a substantially weaker state of coupling than model products. However, the rank order of basins by coupling strength calculated from RS and models do roughly agree. Using a mixture of satellite and modeled variables, a map of hybrid coupling strength was produced, which supports the findings of GLACE that transitional zones tend to have the strongest coupling.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-11-0119.s1.

Corresponding author address: Craig R. Ferguson, Ce407, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan. E-mail: cferguso@rainbow.iis.u-tokyo.ac.jp

This article is included in the Exchanges of Energy and Water at the Land-Atmosphere Interface special collection.

Save
  • Adler, R., Wilheit T. , Kummerow C. , and Ferraro R. , 2007: AMSR-E/Aqua L2B Global Swath Rain Rate/Type GSFC Profiling Algorithm V10-Stage 2. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/ae_rain.html.]

  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., Viterbo P. , Miller M. J. , and Betts A. K. , 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture. Mon. Wea. Rev., 124, 362383.

    • Search Google Scholar
    • Export Citation
  • Bennett, W. B., Wang J. F. , and Bras R. L. , 2008: Estimation of global ground heat flux. J. Hydrometeor., 9, 744759.

  • Betts, A. K., 2004: Understanding hydrometeorology using global models. Bull. Amer. Meteor. Soc., 85, 16731688.

  • Betts, A. K., 2009: Land-surface-atmosphere coupling in observations and models. J. Adv. Model. Earth Syst., 1 (4), 118, doi:10.3894/JAMES.2009.1.4.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., Oleson K. W. , Vertenstein M. , Levis S. , Zeng X. , Dai Y. , Dickinson R. E. , and Yang Z.-L. , 2002: The land surface climatology of the community land model coupled to the NCAR community climate model. J. Climate, 15, 31233149.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., Robertson F. R. , and Chen J. , 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739.

  • Bowen, I. S., 1926: The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev., 27, 779787.

  • Budyko, M. I., 1958: The heat balance of the earth’s surface. U.S. Department of Commerce, Weather Bureau, 259 pp.

  • Budyko, M. I., 1974: Climate and Life. Academic Press, 508 pp.

  • Chahine, M. T., and Coauthors, 2006: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101 (D3), 72517268.

    • Search Google Scholar
    • Export Citation
  • Chen, M. Y., Shi W. , Xie P. P. , Silva V. B. S. , Kousky V. E. , Higgins R. W. , and Janowiak J. E. , 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., Bonan G. B. , and Levis S. , 2006: Soil moisture feedbacks to precipitation in southern Africa. J. Climate, 19, 41984206.

  • Cook, D. R., 2005: Energy balance Bowen ratio (EBBR) handbook. ARM Tech. Rep. TR-037, 23 pp.

  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630.

  • Dai, Y. J., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 10131023.

  • Davey, C. A., and Pielke R. A. , 2005: Microclimate exposures of surface-based weather stations: Implications for the assessment of long-term temperature trends. Bull. Amer. Meteor. Soc., 86, 497504.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., and Manabe S. , 1989: The influence of soil wetness on near-surface atmospheric variability. J. Climate, 2, 14471462.

  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett., 38, L16702, doi:10.1029/2011GL048268.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Dolman A. J. , and Sato N. , 1999: The pilot phase of the Global Soil Wetness Project. Bull. Amer. Meteor. Soc., 80, 851878.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Gao X. , Zhao M. , Guo Z. , Oki T. , and Hanasaki N. , 2006a: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811397.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Koster R. D. , and Guo Z. C. , 2006b: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7, 11771198.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Schlosser C. A. , and Brubaker K. L. , 2009: Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10, 278288.

    • Search Google Scholar
    • Export Citation
  • Divakarla, M. G., Barnet C. D. , Goldberg M. D. , McMillin L. M. , Maddy E. , Wolf W. , Zhou L. , and Liu X. , 2006: Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res., 111, D09S15, doi:10.1029/2005JD006116.

    • Search Google Scholar
    • Export Citation
  • Douville, H., Mahfouf J. F. , Saarinen S. , and Viterbo P. , 1998: The ECMWF surface analysis: Diagnostics and prospects. ECMWF Tech. Memo. 258, 51 pp.

  • Drusch, M., and Viterbo P. , 2007: Assimilation of screen-level variables in ECMWF’s Integrated Forecast System: A study on the impact on the forecast quality and analyzed soil moisture. Mon. Wea. Rev., 135, 300314.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and Wood E. F. , 2009: Observing land–atmosphere interaction globally with satellite remote sensing. Proc. Earth Observation and Water Cycle Science Symp., Frascati, Italy, European Space Agency, P17.

  • Ferguson, C. R., and Wood E. F. , 2010: An evaluation of satellite remote sensing data products for land surface hydrology: Atmospheric Infrared Sounder. J. Hydrometeor., 11, 12341262.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and Wood E. F. , 2011: Observed land–atmosphere coupling from satellite remote sensing and reanalysis. J. Hydrometeor., 12, 12211254.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., Sheffield J. , Wood E. F. , and Gao H. , 2010: Quantifying uncertainty in a remote sensing-based estimate of evapotranspiration over continental USA. Int. J. Remote Sens., 31, 38213865, doi:10.1080/01431161.2010.483490.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., Gentine P. , Lintner B. R. , and Kerr C. , 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439, doi:10.1038/ngeo1174.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., Seneviratne S. I. , Lüthi D. , and Schär C. , 2007: Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, L06707, doi:10.1029/2006GL029068.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., Sulla-Menashe D. , Tan B. , Schneider A. , Ramankutty N. , Sibley A. , and Huang X. M. , 2010: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ., 114, 168182.

    • Search Google Scholar
    • Export Citation
  • Ganguly, S., Schull M. A. , Samanta A. , Shabanov N. V. , Milesi C. , Nemani R. R. , Knyazikhin Y. , and Myneni R. B. , 2008a: Generating vegetation leaf area index earth system data record from multiple sensors. Part 1: Theory. Remote Sens. Environ., 112, 43334343, doi:10.1016/j.rse.2008.07.014.

    • Search Google Scholar
    • Export Citation
  • Ganguly, S., Samanta A. , Schull M. A. , Shabanov N. V. , Milesi C. , Nemani R. R. , Knyazikhin Y. , and Myneni R. B. , 2008b: Generating vegetation leaf area index earth system data record from multiple sensors. Part 2: Implementation, analysis and validation. Remote Sens. Environ., 112, 43184332, doi:10.1016/j.rse.2008.07.013.

    • Search Google Scholar
    • Export Citation
  • Gao, H., Wood E. F. , Jackson T. J. , Drusch M. , and Bindlish R. , 2006: Using TRMM/TMI to retrieve surface soil moisture over the southern United States from 1998 to 2002. J. Hydrometeor., 7, 2338.

    • Search Google Scholar
    • Export Citation
  • Guo, Z. C., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., and Coauthors, 2011: Multimodel estimate of the global terrestrial water balance: Setup and first results. J. Hydrometeor., 12, 869884.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., Yang Z. L. , and Dickinson R. E. , 1993: The Project for Intercomparison of Land-Surface Parameterization Schemes. Bull. Amer. Meteor. Soc., 74, 13351349.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., Brockhaus P. , Bretherton C. S. , and Schär C. , 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020.

    • Search Google Scholar
    • Export Citation
  • Jarvis, P. G., 1976: The interpretation of the variations in leaf-water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, 723B, 593610.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S.-K. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., 2007: Soil moisture from space: Where are we? Hydrogeol. J., 15, 117120.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 1996: Energy and water balance calculations in the Mosaic LSM. NASA Tech. Memo. 104606, Vol. 9, 59 pp.

  • Koster, R. D., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model 1. Model structure. J. Geophys. Res., 105 (D20), 24 80924 822.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , Higgins R. W. , and Van den Dool H. M. , 2003: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett., 30, 1241, doi:10.1029/2002GL016571.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140.

  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Guo Z. C. , Yang R. Q. , Dirmeyer P. A. , Mitchell K. , and Puma M. J. , 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 43224335.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415.

    • Search Google Scholar
    • Export Citation
  • Li, L., Njoku E. G. , Im E. , Chang P. S. , and St. Germain K. , 2004: A preliminary survey of radio-frequency interference over the U.S. in Aqua AMSR-E data. IEEE Trans. Geosci. Remote Sens., 42, 380390.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99 (D7), 14 41514 428.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Wood E. F. , and Lettenmaier D. P. , 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global Planet. Change, 13, 195206.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., Mitchell K. E. , Rogers E. , Baldwin M. E. , and DiMego G. J. , 1999: Test assimilations of the real-time, multi-sensor hourly precipitation analysis into the NCEP Eta model. Preprints, Eighth Conf. on Mesoscale Meteorology, Boulder, CO, Amer. Meteor. Soc., 341–344.

  • Massman, W. J., 1997: An analytical one-dimensional model of momentum transfer by vegetation of arbitrary structure. Bound.-Layer Meteor., 83, 407421.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and Obukhov A. M. , 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24 (151), 163187.

    • Search Google Scholar
    • Export Citation
  • Mu, Q., Heinsch F. A. , Zhao M. , and Running S. W. , 2007: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ., 111, 519536, doi:10.1016/j.rse.2007.04.015.

    • Search Google Scholar
    • Export Citation
  • Narayan, U., Lakshmi V. , and Njoku E. G. , 2004: Retrieval of soil moisture from passive and active L/S band sensor (PALS) observations during the Soil Moisture Experiment in 2002 (SMEX02). Remote Sens. Environ., 92, 483496.

    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., Jackson T. J. , Lakshmi V. , Chan T. K. , and Nghiem S. V. , 2003: Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 215229.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2005: JRA-25: Japanese 25-year re-analysis project—Progress and status. Quart. J. Roy. Meteor. Soc., 131, 32593268, doi:10.1256/qj.05.88.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Owe, M., de Jeu R. , and Walker J. , 2001: A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens., 39, 16431654.

    • Search Google Scholar
    • Export Citation
  • Owe, M., de Jeu R. , and Holmes T. , 2008: Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res., 113, F01002, doi:10.1029/2007JF000769.

    • Search Google Scholar
    • Export Citation
  • Pan, H. L., and Mahrt L. , 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor., 38, 185202.

  • Pan, M., Sahoo A. K. , Troy T. J. , Vinukollu R. V. , Sheffield J. , and Wood E. F. , 2012: Multisource estimation of long-term terrestrial water budget for major global river basins. J. Climate,25, 3191–3206.

  • Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London, 193A, 120145.

  • Pinzon, J., Brown M. E. , and Tucker C. J. , 2005: Satellite time series correction of orbital drift artifacts using empirical mode decomposition. Hilbert–Huang Transform: Introduction and Applications, N. Huang, Ed., Interdisciplinary Mathematical Sciences, Vol. 5, World Scientific, 167–186.

  • Press, W. H., Flannery B. P. , Teukolsky S. A. , and Vetterling W. T. , 1992: Nonparametric or rank correlation. Numerical Recipes in C: The Art of Scientific Computing, L. Cowles and A. Harvey, Eds., 2nd ed. Cambridge University Press, 639–644.

  • Reichle, R. H., Koster R. D. , de Lannoy G. J. M. , Forman B. A. , Liu Q. , Mahanama S. P. P. , and Touré A. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1 and 5.1.0. NASA GSFC Tech. Rep. Series on Global Modeling and Data Assimilation NASA/TM-2007-104606, Vol. 27, 92 pp.

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Robertson, F. R., Bosilovich M. G. , Chen J. , and Miller T. L. , 2011: The effect of satellite observing system changes on MERRA water and energy fluxes. J. Climate, 24, 51975217.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394.

  • Rogers, E., Black T. , Ferrier B. , Lin Y. , Parrish D. , and DiMego G. , cited 2001: Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. NOAA/NWS Tech. Procedures Bulletin 488. [Available online at http://www.emc.ncep.noaa.gov/mmb/mmbpll/eta12tpb.]

  • Ruane, A. C., 2010a: NARR’s atmospheric water cycle components. Part I: 20-year mean and annual interactions. J. Hydrometeor., 11, 12051219.

    • Search Google Scholar
    • Export Citation
  • Ruane, A. C., 2010b: NARR’s atmospheric water cycle components. Part II: Summertime mean and diurnal interactions. J. Hydrometeor., 11, 12201233.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sahoo, A. K., Pan M. , Troy T. J. , Vinukollu R. V. , Sheffield J. , and Wood E. F. , 2011: Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sens. Environ., 115, 18501865.

    • Search Google Scholar
    • Export Citation
  • Sato, N., Sellers P. J. , Randall D. A. , Schneider E. K. , Shukla J. , Kinter J. L. III, Hou Y.-T. , and Albertazzi E. , 1989: Effects of implementing the Simple Biosphere Model in a general circulation model. J. Atmos. Sci., 46, 27572782.

    • Search Google Scholar
    • Export Citation
  • Scanlon, T. M., and Albertson J. D. , 2003: Inferred controls on tree/grass composition in a savanna ecosystem: Combining 16-year normalized difference vegetation index data with a dynamic soil moisture model. Water Resour. Res., 39, 1224, doi:10.1029/2002wr001881.

    • Search Google Scholar
    • Export Citation
  • Schenk, H. J., and Jackson R. B. , 2002a: The global biogeography of roots. Ecol. Monogr., 72, 311328.

  • Schenk, H. J., and Jackson R. B. , 2002b: Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol., 90, 480494.

    • Search Google Scholar
    • Export Citation
  • Schiffer, R. A., and Rossow W. B. , 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. Bull. Amer. Meteor. Soc., 64, 779784.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Mintz Y. , Sud Y. C. , and Dalcher A. , 1986: A Simple Biosphere Model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 505531.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Luthi D. , Litschi M. , and Schar C. , 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Corti T. , Davin E. L. , Hirschi M. , Jaeger E. B. , Lehner I. , Orlowsky B. , and Teuling A. J. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Wood E. F. , 2007: Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res., 112, D17115, doi:10.1029/2006JD008288.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., Gupta S. K. , Cox S. J. , Chiacchio M. , and Mikovitz C. , 2000: The WCRP/GEWEX Surface Radiation Budget Project Release 2: An assessment of surface fluxes at 1 degree resolution. IRS 2000: Current Problems in Atmospheric Radiation, W. L. Smith and Y. M. Timofeyev, Eds., A. Deepak Publishing, 485–489.

  • Su, Z., 2002: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci., 6, 8599.

  • Sud, Y. C., Sellers P. J. , Mintz Y. , Chou M. D. , Walker G. K. , and Smith W. E. , 1990: Influence of the biosphere on the global circulation and hydrologic cycle—A GCM simulation experiment. Agric. For. Meteor., 52, 133180.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., Solomon S. , Dai A. , and Portmann R. W. , 2006: How often does it rain? J. Climate, 19, 916934.

  • Susskind, J., Barnet C. D. , and Blaisdell J. M. , 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41, 390409.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., Blaisdell J. M. , Iredell L. , and Keita F. , 2010: Improved temperature sounding and quality control methodology using AIRS/AMSU data: The AIRS Science Team Version 5 retrieval algorithm. IEEE Trans. Geosci. Remote Sens., 49, 883907, doi:10.1109/TGRS.2010.2070508.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., and Ellis R. J. , 2006: Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys. Res. Lett., 33, L03404, doi:10.1029/2005GL025252.

    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., and Vose R. S. , 2010: Reanalyses suitable for characterizing long-term trends are they really achievable? Bull. Amer. Meteor. Soc., 91, 353361.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Smith L. , 2005: The mass of the atmosphere: A constraint on global analyses. J. Climate, 18, 864875.

  • Trenberth, K. E., Smith L. , Qian T. T. , Dai A. , and Fasullo J. , 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Fasullo J. T. , and Kiehl J. , 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323.

  • Trenberth, K. E., Fasullo J. T. , and Mackaro J. , 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924.

    • Search Google Scholar
    • Export Citation
  • Troy, T. J., Wood E. F. , and Sheffield J. , 2008: An efficient calibration method for continental-scale land surface modeling. Water Resour. Res., 44, W09411, doi:10.1029/2007WR006513.

    • Search Google Scholar
    • Export Citation
  • Troy, T. J., Sheffield J. , and Wood E. F. , 2011: Estimation of the terrestrial water budget over northern Eurasia through the use of multiple data sources. J. Climate, 24, 32723293.

    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., Pinzon J. E. , Brown M. E. , Slayback D. A. , Pak E. W. , Mahoney R. , Vermote E. F. , and El Saleousa N. , 2005: An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens., 26, 44854498, doi:10.1080/01431160500168686.

    • Search Google Scholar
    • Export Citation
  • Valente, F., David J. S. , and Gash J. H. C. , 1997: Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models. J. Hydrol., 190, 141162.

    • Search Google Scholar
    • Export Citation
  • Van den Hurk, B. J. J. M., Viterbo P. , Beljaars A. C. M. , and Betts A. K. , 2000: Offline validation of the ERA40 surface scheme. ECMWF Tech. Memo. 295, 43 pp.

  • Vinnikov, K. Y., Robock A. , Speranskaya N. A. , and Schlosser A. , 1996: Scales of temporal and spatial variability of midlatitude soil moisture. J. Geophys. Res., 101 (D3), 71637174.

    • Search Google Scholar
    • Export Citation
  • Vinukollu, R. K., Meynadier R. , Sheffield J. , and Wood E. F. , 2011a: Multi-model, multi-sensor estimates of global evapotranspiration: Climatology, uncertainties and trends. Hydrol. Processes, 25, 39934010.

    • Search Google Scholar
    • Export Citation
  • Vinukollu, R. K., Wood E. F. , Ferguson C. R. , and Fisher J. B. , 2011b: Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ., 115, 801823, doi:10.1016/j.rse.2010.11.006.

    • Search Google Scholar
    • Export Citation
  • Vinukollu, R. K., Sheffield J. , Wood E. F. , Bosilovich M. G. , and Mocko D. , 2012: Multimodel analysis of energy and water fluxes: Intercomparisons between operational analyses, a land surface model, and remote sensing. J. Hydrometeor., 13, 326.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., and Beljaars A. C. M. , 1995: An improved land–surface parameterization scheme in the ECMWF model and its validation. J. Climate, 8, 27162748.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., Douville H. , Mahfouf J. F. , and Beljaars A. C. M. , 2000: Evaluation of the optimum interpolation and nudging techniques for soil moisture analysis using FIFE data. Mon. Wea. Rev., 128, 17331756.

    • Search Google Scholar
    • Export Citation
  • Wagner, W., Naeimi V. , Scipal K. , de Jeu R. , and Martinez-Fernandez J. , 2007: Soil moisture from operational meteorological satellites. Hydrogeol. J., 15, 121131.

    • Search Google Scholar
    • Export Citation
  • Wei, J. F., Dirmeyer P. A. , Guo Z. C. , Zhang L. , and Misra V. , 2010a: How much do different land models matter for climate simulation? Part I: Climatology and variability. J. Climate, 23, 31203134.

    • Search Google Scholar
    • Export Citation
  • Wei, J. F., Dirmeyer P. A. , and Guo Z. C. , 2010b: How much do different land models matter for climate simulation? Part II: A decomposed view of the land–atmosphere coupling strength. J. Climate, 23, 31353145.

    • Search Google Scholar
    • Export Citation
  • Wilcox, E. M., and Donner L. J. , 2007: The frequency of extreme rain events in satellite rain-rate estimates and an atmospheric general circulation model. J. Climate, 20, 5369.

    • Search Google Scholar
    • Export Citation
  • Williams, C. A., and Albertson J. D. , 2005: Contrasting short- and long-timescale effects of vegetation dynamics on water and carbon fluxes in water-limited ecosystems. Water Resour. Res., 41, W06005, doi:10.1029/2004wr003750.

    • Search Google Scholar
    • Export Citation
  • Williams, C. A., and Albertson J. D. , 2006: Dynamical effects of the statistical structure of annual rainfall on dryland vegetation. Global Change Biol., 12, 777792, doi:10.1111/j.1365-2486.2006.01111.x.

    • Search Google Scholar
    • Export Citation
  • Xie, P. P., and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Xie, P. P., Yatagai A. , Chen M. Y. , Hayasaka T. , Fukushima Y. , Liu C. M. , and Yang S. , 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626.

    • Search Google Scholar
    • Export Citation
  • Yang, W. Z., and Coauthors, 2006: MODIS leaf area index products: From validation to algorithm improvement. IEEE Trans. Geosci. Remote Sens., 44, 18851898, doi:10.1109/tgrs.2006.871215.

    • Search Google Scholar
    • Export Citation
  • Zeng, X. B., Dickinson R. E. , Walker A. , Shaikh M. , DeFries R. S. , and Qi J. G. , 2000: Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. J. Appl. Meteor., 39, 826839.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. C., Rossow W. B. , Lacis A. A. , Oinas V. , and Mishchenko M. I. , 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5535 4314 403
PDF Downloads 591 130 11