Representation of Terrestrial Hydrology and Large-Scale Drought of the Continental United States from the North American Regional Reanalysis

Justin Sheffield Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Justin Sheffield in
Current site
Google Scholar
PubMed
Close
,
Ben Livneh Department of Civil Engineering, University of Washington, Seattle, Washington

Search for other papers by Ben Livneh in
Current site
Google Scholar
PubMed
Close
, and
Eric F. Wood Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Eric F. Wood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The North American Regional Reanalysis (NARR) is a state-of-the-art land–atmosphere reanalysis product that provides improved representation of the terrestrial hydrologic cycle compared to previous global reanalyses, having the potential to provide an enhanced picture of hydrologic extremes such as floods and droughts and their driving mechanisms. This is partly because of the novel assimilation of observed precipitation, state-of-the-art land surface scheme, and higher spatial resolution. NARR is evaluated in terms of the terrestrial water budget and its depiction of drought at monthly to annual time scales against two offline land surface model [Noah v2.7.1 and Variable Infiltration Capacity (VIC)] simulations and observation-based runoff estimates over the continental United States for 1979–2003. An earlier version of the Noah model forms the land component of NARR and so the offline simulation provides an opportunity to diagnose NARR land surface variables independently of atmospheric feedbacks. The VIC model has been calibrated against measured streamflow and so provides a reasonable estimate of large-scale evapotranspiration. Despite similar precipitation, there are large differences in the partitioning of precipitation into evapotranspiration and runoff. Relative to VIC, NARR and Noah annual evapotranspiration is biased high by 28% and 24%, respectively, and the runoff ratios are 50% and 40% lower. This is confirmed by comparison with observation-based runoff estimates from 1130 small, relatively unmanaged basins across the continental United States. The overestimation of evapotranspiration by NARR is largely attributed to the evapotranspiration component of the Noah model, whereas other factors such as atmospheric forcings or biases induced by precipitation assimilation into NARR play only a minor role. A combination of differences in the parameterization of evapotranspiration and in particular low stomatal resistance values in NARR, the seasonality of vegetation characteristics, the near-surface radiation and meteorology, and the representation of soil moisture dynamics, including high infiltration rates and the relative coupling of soil moisture with baseflow in NARR, are responsible for the differences in the water budgets. Large-scale drought as quantified by soil moisture percentiles covaries closely over the continental United States between the three datasets, despite large differences in the seasonal water budgets. However, there are large regional differences, especially in the eastern United States where the VIC model shows higher variability in drought dynamics. This is mostly due to increased frequency of completely dry conditions in NARR that result from differences in soil depth, higher evapotranspiration, early snowmelt, and early peak runoff. In the western United States, differences in the precipitation forcing contribute to large discrepancies between NARR and Noah/VIC simulations in the representation of the early 2000s drought.

Corresponding author address: Justin Sheffield, Department of Civil and Environmental Engineering, E-Quad, Princeton University, Princeton, NJ 08544. E-mail: justin@princeton.edu

Abstract

The North American Regional Reanalysis (NARR) is a state-of-the-art land–atmosphere reanalysis product that provides improved representation of the terrestrial hydrologic cycle compared to previous global reanalyses, having the potential to provide an enhanced picture of hydrologic extremes such as floods and droughts and their driving mechanisms. This is partly because of the novel assimilation of observed precipitation, state-of-the-art land surface scheme, and higher spatial resolution. NARR is evaluated in terms of the terrestrial water budget and its depiction of drought at monthly to annual time scales against two offline land surface model [Noah v2.7.1 and Variable Infiltration Capacity (VIC)] simulations and observation-based runoff estimates over the continental United States for 1979–2003. An earlier version of the Noah model forms the land component of NARR and so the offline simulation provides an opportunity to diagnose NARR land surface variables independently of atmospheric feedbacks. The VIC model has been calibrated against measured streamflow and so provides a reasonable estimate of large-scale evapotranspiration. Despite similar precipitation, there are large differences in the partitioning of precipitation into evapotranspiration and runoff. Relative to VIC, NARR and Noah annual evapotranspiration is biased high by 28% and 24%, respectively, and the runoff ratios are 50% and 40% lower. This is confirmed by comparison with observation-based runoff estimates from 1130 small, relatively unmanaged basins across the continental United States. The overestimation of evapotranspiration by NARR is largely attributed to the evapotranspiration component of the Noah model, whereas other factors such as atmospheric forcings or biases induced by precipitation assimilation into NARR play only a minor role. A combination of differences in the parameterization of evapotranspiration and in particular low stomatal resistance values in NARR, the seasonality of vegetation characteristics, the near-surface radiation and meteorology, and the representation of soil moisture dynamics, including high infiltration rates and the relative coupling of soil moisture with baseflow in NARR, are responsible for the differences in the water budgets. Large-scale drought as quantified by soil moisture percentiles covaries closely over the continental United States between the three datasets, despite large differences in the seasonal water budgets. However, there are large regional differences, especially in the eastern United States where the VIC model shows higher variability in drought dynamics. This is mostly due to increased frequency of completely dry conditions in NARR that result from differences in soil depth, higher evapotranspiration, early snowmelt, and early peak runoff. In the western United States, differences in the precipitation forcing contribute to large discrepancies between NARR and Noah/VIC simulations in the representation of the early 2000s drought.

Corresponding author address: Justin Sheffield, Department of Civil and Environmental Engineering, E-Quad, Princeton University, Princeton, NJ 08544. E-mail: justin@princeton.edu
Save
  • Alley, W. M., 1984: The Palmer drought severity index: Limitations and assumptions. J. Climate Appl. Meteor., 23, 11001109.

  • Alsdorf, D. A., and Lettenmaier D. P. , 2003: Tracking fresh water from space. Science, 301, 14911494.

  • Andreadis, K. M., Clark E. A. , Wood A. W. , Hamlet A. F. , and Lettenmaier D. P. , 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6, 9851001.

    • Search Google Scholar
    • Export Citation
  • Barlage, M., and Coauthors, 2010: Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res., 115, D22101, doi:10.1029/2009JD013470.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Ball J. H. , 1998: FIFE surface climate and site-averaged dataset 1987–89. J. Atmos. Sci., 55, 10911108.

  • Betts, A. K., Köhler M. , and Zhang Y. , 2009: Comparison of river basin hydrometeorology in ERA-Interim and ERA-40 reanalyses with observations. J. Geophys. Res., 114, D02101, doi:10.1029/2008JD010761.

    • Search Google Scholar
    • Export Citation
  • Campana, K., and Caplan P. , Eds., cited 2011: “Technical procedures bulletin” for the T382 Global Forecast System. [Available online at http://www.emc.ncep.noaa.gov/gc_wmb/Documentation/TPBoct05/T382.TPB.FINAL.htm.]

  • Chen, F., Janjic Z. , and Mitchell K. , 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Bound.-Layer Meteor., 85, 391421.

    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., and Lettenmaier D. P. , 1999: Hydrologic effects of frozen soils in the upper Mississippi River basin. J. Geophys. Res., 104 (D16), 19 59919 610, doi:10.1029/1999JD900337.

    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., Bowling L. C. , and Lettenmaier D. P. , 2002: Variable Infiltration Capacity (VIC) cold land process model updates. Global Planet. Change, 38, 151159.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., Slater A. G. , Rupp D. E. , Woods R. A. , Vrugt J. A. , Gupta H. V. , Wagener T. , and Hay L. , 2008: Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models. Water Resour. Res., 44, W00B02, doi:10.1029/2007WR006735.

    • Search Google Scholar
    • Export Citation
  • Dai, A. G., Trenberth K. E. , and Qian T. T. , 2004: A global dataset of Palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5, 11171130.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158.

    • Search Google Scholar
    • Export Citation
  • Déry, S. J., Wood E. F. , and Kerr C. , 2007: Comparing NARR, ERA-40, and observed Hudson Bay river discharge. Preprints, North American Regional Reanalysis Workshop, San Diego, CA, Amer. Meteor. Soc. [Available online at http://www.emc.ncep.noaa.gov/mmb/rreanl/.]

  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., Van den Dool H. M. , Lohmann D. , and Mitchell K. , 2006: 1948–98 U.S. hydrological reanalysis by the Noah Land Data Assimilation System. J. Climate, 19, 12141237.

    • Search Google Scholar
    • Export Citation
  • Fassnacht, S. R., 2006: Upper versus Lower Colorado River sub-basin streamflow: Characteristics, runoff estimation and model simulation. Hydrol. Processes, 20, 21872205, doi:10.1002/hyp.6202.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., Sheffield J. , Wood E. F. , and Gao H. L. , 2010: Quantifying uncertainty in a remote sensing-based estimate of evapotranspiration over continental USA. Int. J. Remote Sens., 31, 38213865.

    • Search Google Scholar
    • Export Citation
  • Franz, K. J., Butcher P. , and Ajami N. K. , 2010: Addressing snow model uncertainty for hydrologic prediction. Adv. Water Resour., 33, 820832, doi:10.1016/j.advwatres.2010.05.004.

    • Search Google Scholar
    • Export Citation
  • Georgakakos, A. P., Yao H. , Mullusky M. , and Georgakakos K. P. , 1998: Impacts of climate variability on the operational forecast and management of the upper Des Moines River basin. Water Resour. Res., 34, 799821.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., Dirmeyer P. A. , Hu Z.-Z. , Gao X. , and Zhao M. , 2006: Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 2. Sensitivity to external meteorological forcing. J. Geophys. Res., 111, D22S03, doi:10.1029/2006JD007845.

    • Search Google Scholar
    • Export Citation
  • Gutman, G., and Ignatov A. , 1998: Derivation of green vegetation fraction from NOAA/AVHRR for use in weather prediction models. Int. J. Remote Sens., 19, 15331543.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and Lettenmaier D. P. , 2005: Production of temporally consistent gridded precipitation and temperature fields for the continental United States. J. Hydrometeor., 6, 330336.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Chen Y. , and Douglas A. V. , 1999: Interannual variability of the North American warm season precipitation regime. J. Climate, 12, 653680.

    • Search Google Scholar
    • Export Citation
  • Jarvis, P. G., 1976: The interpretation of leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, 273B, 593610.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., Williams C. N. Jr., Quinlan F. T. , and Boden T. A. , 1990: United States Historical Climatology Network (HCN) serial temperature and precipitation data. Environmental Science Division, Carbon Dioxide Information and Analysis Center, Oak Ridge National Laboratory Publ. 304, Oak Ridge, TN, 389 pp.

  • Karnauskas, K. B., Ruiz-Barradas A. , Nigam S. , and Busalacchi A. J. , 2008: North American droughts in ERA-40 global and NCEP North American Regional Reanalyses: A Palmer drought severity index perspective. J. Climate, 21, 21022123.

    • Search Google Scholar
    • Export Citation
  • Kopp, T. J., and Kiess R. B. , 1996: The Air Force Global Weather Central snow analysis model. Preprints, 15th Conf. on Weather Analysis and Forecasting, Norfolk, VA, Amer. Meteor. Soc., 220–222.

  • Koren, V., Schaake J. , Mitchell K. , Duan Q.-Y. , Chen F. , and Baker J. M. , 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104 (D16), 19 56919 585.

    • Search Google Scholar
    • Export Citation
  • Korolevich, V., Fernandes R. , Wang S. , Simic A. , Gong F. , and Zelic P. , cited 2005: Assessment of reanalysis forcings for use within Canada-wide water budgets: Part 2. [Available online at http://www.emc.ncep.noaa.gov/mmb/rreanl/korolevich2.ppt.]

  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., Qian Y. , Han J. , and Roads J. O. , 2003: Intercomparison of global reanalyses and regional simulations of cold season water budgets in the western United States. J. Hydrometeor., 4, 10671087.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for GCMs. J. Geophys. Res., 99 (D7), 14 41514 428.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., Xia Y. , Mitchell K. E. , Ek M. B. , and Lettenmaier D. P. , 2010: Noah LSM snow model diagnostics and enhancements. J. Hydrometeor., 11, 721738.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., and Coauthors, 2004: Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System project. J. Geophys. Res., 109, D07S91, doi:10.1029/2003JD003517.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and Ek M. , 1984: The influence of atmospheric stability on potential evaporation. J. Appl. Meteor., 23, 222234.

  • Maurer, E. P., O’Donnell G. M. , Lettenmaier D. P. , and Roads J. O. , 2001: Evaluation of the land surface water budget in NCEP/NCAR and NCEP/DOE reanalyses using an off-line hydrologie model. J. Geophys. Res., 106, 17 84117 862, doi:10.1029/2000JD900828.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Wood A. W. , Adam J. C. , Lettenmaier D. P. , and Nijssen B. , 2002: A long-term hydrologically based data set of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., Palecki M. A. , and Betancourt J. L. , 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Miller, J., Barlage M. , Zeng X. , Wei H. , Mitchell K. , and Tarpley D. , 2006: Sensitivity of the NCEP/Noah land surface model to the MODIS green vegetation fraction data set. Geophys. Res. Lett., 33, L13404, doi:10.1029/2006GL026636.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2002: Reducing near-surface cool/moist biases over snowpack and early spring wet soils in NCEP Eta model forecasts via land surface model upgrades. Preprints, 16th Conf. on Hydrology, Orlando, FL, Amer. Meteor. Soc., J1.1. [Available online at http://ams.confex.com/ams/annual2002/techprogram/paper_31072.htm.]

  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, cited 2011: N. American Regional Reanalysis Land Surface: Configuration, physics, results, cautions. [Available online at http://www.emc.ncep.noaa.gov/mmb/rreanl/land_sfc.ppt.]

  • Mo, K. C., and Chelliah M. , 2006: The modified Palmer drought severity index based on the NCEP North American Regional Reanalysis. J. Appl. Meteor. Climatol., 45, 13621375.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., Chelliah M. , Carrera M. L. , Higgins R. W. , and Ebisuzaki W. , 2005: Atmospheric moisture transport over the United States and Mexico as evaluated in the NCEP Regional Reanalysis. J. Hydrometeor., 6, 710728.

    • Search Google Scholar
    • Export Citation
  • Monroe, J. W., 2007: Evaluating NARR surface reanalysis variables and NLDAS using Oklahoma Mesonet observations. M.S. thesis, School of Meteorology, University of Oklahoma, 190 pp.

  • Monteith, J. L., 1965: Evaporation and environment. The State and Movement of Water in Living Organisms, G. E. Fogg, Ed., Symposium of the Society of Experimental Biology, Vol. 19, Cambridge University Press, 205–234.

  • Myneni, R. B., R. Ramakrishna, Nemani R. , and Running S. W. , 1997: Estimation of global leaf area index and absorbed PAR using radiative transfer model. IEEE Trans. Geosci. Remote Sens., 35, 13801393.

    • Search Google Scholar
    • Export Citation
  • NCEP, cited 2011: Regional reanalysis questions and answers. [Available online at http://www.emc.ncep.noaa.gov/mmb/rreanl/faq.html.]

  • Nigam, S., and Ruiz-Barradas A. , 2006: Seasonal hydroclimate variability over North America in global and regional reanalyses and AMIP simulations: Varied representation. J. Climate, 19, 815837.

    • Search Google Scholar
    • Export Citation
  • Pan, M., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent. J. Geophys. Res., 108, 8850, doi:10.1029/2003JD003994.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., Hobbins M. T. , and Farquhar G. D. , 2009: Pan evaporation trends and the terrestrial water balance. II. Energy balance and interpretation. Geogr. Compass, 3, 761780.

    • Search Google Scholar
    • Export Citation
  • Ruane, A. C., 2010a: NARR’s atmospheric water cycle components. Part I: 20-year mean and annual interactions. J. Hydrometeor., 11, 12051219.

    • Search Google Scholar
    • Export Citation
  • Ruane, A. C., 2010b: NARR’s atmospheric water cycle components. Part II: Summertime mean and diurnal interactions. J. Hydrometeor., 11, 12201233.

    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., Koren V. I. , Duan Q.-Y. , Mitchell K. , and Chen F. , 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 74617475.

    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., and Coauthors, 2004: An intercomparison of soil moisture fields in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res., 109, D01S90, doi:10.1029/2002JD003309.

    • Search Google Scholar
    • Export Citation
  • Shafran, P. C., Woollen J. , Ebisuzaki W. , Shi W. , Fan Y. , Grumbine R. W. , and Fennessy M. , 2004: Observational data used for assimilation in the NCEP North American Regional Reanalysis. Preprints, 14th Conf. on Applied Climatology, Seattle, WA, Amer. Meteor. Soc., 1.4. [Available online at http://ams.confex.com/ams/84Annual/techprogram/paper_71689.htm.]

  • Sheffield, J., and Wood E. F. , 2007: Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res., 112, D17115, doi:10.1029/2006JD008288.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 1. Evaluation of model-simulated snow cover extent. J. Geophys. Res., 108, 8849, doi:10.1029/2002JD003274.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , Wen F. , and Wood E. F. , 2004: A simulated soil moisture based drought analysis for the United States. J. Geophys. Res., 109, D24108, doi:10.1029/2004JD005182.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Ferguson C. R. , Troy T. J. , Wood E. F. , and McCabe M. F. , 2009: Closing the terrestrial water budget from satellite remote sensing. Geophys. Res. Lett., 36, L07403, doi:10.1029/2009GL037338.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Wood E. F. , and Munoz-Arriola F. , 2010: Long-term regional estimates of evapotranspiration for Mexico based on downscaled ISCCP data. J. Hydrometeor., 11, 253275.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., Bohn T. J. , McCreight J. L. , Serreze M. C. , and Lettenmaier D. P. , 2007: A multimodel simulation of pan-Arctic hydrology. J. Geophys. Res., 112, G04S45, doi:10.1029/2006JG000303.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., Jr., Gupta S. K. , Cox S. J. , Mikovitz J. C. , Zhang T. , and Chiacchio M. , 2004: 12-year surface radiation budget dataset. GEWEX News, No. 14, International GEWEX Project Office, Silver Spring, MD, 10–11.

  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190.

  • Todini, E., 1996: The ARNO rainfall-runoff model. J. Hydrol., 175, 339382.

  • Troy, T. J., Wood E. F. , and Sheffield J. , 2008: An efficient calibration method for continental-scale land surface modeling. Water Resour. Res., 44, W09411, doi:10.1029/2007WR006513.

    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., and Gullett D. W. , 1999: Canadian historical and homogeneous temperature datasets for climate change analyses. Int. J. Climatol., 19, 13751388.

    • Search Google Scholar
    • Export Citation
  • Wang, A., Zeng X. , Shen S. S. P. , Zeng Q.-C. , and Dickinson R. E. , 2006: Timescales of land surface hydrology. J. Hydrometeor., 7, 868879.

    • Search Google Scholar
    • Export Citation
  • Wang, A., Bohn T. J. , Mahanama S. P. , Koster R. D. , and Lettenmaier D. P. , 2009: Multimodel ensemble reconstruction of drought over the continental United States. J. Climate, 22, 26942712.

    • Search Google Scholar
    • Export Citation
  • Weaver, S., Ruiz-Barradas A. , and Nigam S. , 2009: Pentad evolution of the 1988 drought and 1993 flood over the Great Plains: A NARR Perspective on the atmospheric and terrestrial water balance. J. Climate, 22, 53665384.

    • Search Google Scholar
    • Export Citation
  • Wei, H., Xia Y. , Mitchell K. E. , and Ek M. B. , 2012: Improvement of Noah land surface model for the warm season processes: Assessment of water and energy flux simulation. Hydrol. Processes, doi:10.1002/hyp.9214, in press.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System Project Phase 2 (NLDAS-2), Part 1: Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Zehe, E., and Blöschl G. , 2004: Predictability of hydrologic response at the plot and catchment scales: Role of initial conditions. Water Resour. Res., 40, W10202, doi:10.1029/2003WR002869.

    • Search Google Scholar
    • Export Citation
  • Zhu, C. M., and Lettenmaier D. P. , 2007: Long-term climate and derived surface hydrology and energy flux data for Mexico, 1925–2004. J. Climate, 20, 19361946.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1140 760 57
PDF Downloads 271 43 2