Estimating the Accuracy of Polarimetric Radar–Based Retrievals of Drop-Size Distribution Parameters and Rain Rate: An Application of Error Variance Separation Using Radar-Derived Spatial Correlations

M. Thurai Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by M. Thurai in
Current site
Google Scholar
PubMed
Close
,
V. N. Bringi Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by V. N. Bringi in
Current site
Google Scholar
PubMed
Close
,
L. D. Carey NSSTC/University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by L. D. Carey in
Current site
Google Scholar
PubMed
Close
,
P. Gatlin NSSTC/University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by P. Gatlin in
Current site
Google Scholar
PubMed
Close
,
E. Schultz NSSTC/University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by E. Schultz in
Current site
Google Scholar
PubMed
Close
, and
W. A. Petersen NASA MSFC, Huntsville, Alabama

Search for other papers by W. A. Petersen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The accuracy of retrieving the two drop size distribution (DSD) parameters, median volume diameter (D0), and normalized intercept parameter (NW), as well as rain rate (R), from polarimetric C-band radar data obtained during a cool-season, long-duration precipitation event in Huntsville, Alabama, is examined. The radar was operated in a special “near-dwelling” mode over two video disdrometers (2DVD) located 15 km away. The polarimetric radar–based retrieval algorithms for the DSD parameters and rain rate were obtained from simulations using the 2DVD measurements of the DSD. A unique feature of this paper is the radar-based estimation of the spatial correlation functions of the two DSD parameters and rain rate that are used to estimate the “point-to-area” variance. A detailed error variance separation is performed, including the aforementioned point-to-area variance, along with variance components due to the retrieval algorithm error, radar measurement error, and disdrometer sampling error. The spatial decorrelation distance was found to be smallest for the R (4.5 km) and largest for D0 (8.24 km). For log10(NW), it was 7.22 km. The proportion of the variance of the difference between radar-based estimates and 2DVD measurements that could be explained by the aforementioned errors was 100%, 57%, and 73% for D0, log10(NW), and R, respectively. The overall accuracy of the radar-based retrievals for the particular precipitation event quantified in terms of the fractional standard deviation were estimated to be 6.8%, 6%, and 21% for D0, log10(NW), and R, respectively. The normalized bias was <1%. These correspond to time resolution of ~3 min and spatial resolution of ~1.5 km.

Corresponding author address: M. Thurai, Dept. of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523-1373. E-mail: merhala@engr.colostate.edu

Abstract

The accuracy of retrieving the two drop size distribution (DSD) parameters, median volume diameter (D0), and normalized intercept parameter (NW), as well as rain rate (R), from polarimetric C-band radar data obtained during a cool-season, long-duration precipitation event in Huntsville, Alabama, is examined. The radar was operated in a special “near-dwelling” mode over two video disdrometers (2DVD) located 15 km away. The polarimetric radar–based retrieval algorithms for the DSD parameters and rain rate were obtained from simulations using the 2DVD measurements of the DSD. A unique feature of this paper is the radar-based estimation of the spatial correlation functions of the two DSD parameters and rain rate that are used to estimate the “point-to-area” variance. A detailed error variance separation is performed, including the aforementioned point-to-area variance, along with variance components due to the retrieval algorithm error, radar measurement error, and disdrometer sampling error. The spatial decorrelation distance was found to be smallest for the R (4.5 km) and largest for D0 (8.24 km). For log10(NW), it was 7.22 km. The proportion of the variance of the difference between radar-based estimates and 2DVD measurements that could be explained by the aforementioned errors was 100%, 57%, and 73% for D0, log10(NW), and R, respectively. The overall accuracy of the radar-based retrievals for the particular precipitation event quantified in terms of the fractional standard deviation were estimated to be 6.8%, 6%, and 21% for D0, log10(NW), and R, respectively. The normalized bias was <1%. These correspond to time resolution of ~3 min and spatial resolution of ~1.5 km.

Corresponding author address: M. Thurai, Dept. of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523-1373. E-mail: merhala@engr.colostate.edu
Save
  • Anagnostou, M. N., Anagnostou E. N. , Vivekanandan J. , and Ogden F. L. , 2008: Comparison of two raindrop size distribution retrieval algorithms for X-band dual polarization observations. J. Hydrometeor., 9, 589600.

    • Search Google Scholar
    • Export Citation
  • Austin, G., Shucksmith P. , and Sutherland-Stacey L. , 2010: The characterization of radar space-time sampling errors for different meteorological situations. Extended Abstracts, ERAD 2010—Sixth European Conf. on Radar in Meteorology and Hydrology, Sibiu, Romania, National Meteorological Administration of Romania.

  • Aydin, K., Seliga T. A. , and Balaji V. , 1986: Remote sensing of hail with a dual linear polarization radar. J. Climate Appl. Meteor., 25, 14751484.

    • Search Google Scholar
    • Export Citation
  • Berne, A., Jaffrain J. , and Schleiss M. , 2010: Scaling analysis of the DSD variability at small spatial scales. Extended Abstracts, 2010—Sixth European Conf. on Radar in Meteorology and Hydrology, Sibiu, Romania, National Meteorological Administration of Romania.

  • Brandes, E. A., Zhang G. , and Vivekanandan J. , 2004: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43, 461475.

    • Search Google Scholar
    • Export Citation
  • Bras, R. L., and Rodriguez-Iturbe I. , 1994: Random Functions and Hydrology. Dover, 559 pp.

  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar. Cambridge University Press, 636 pp.

  • Bringi, V. N., Chandrasekar V. , and Xiao R. , 1998: Raindrop axis ratios and size distributions in Florida rain shafts: An assessment of multiparameter radar algorithms. IEEE Trans. Geosci. Remote Sens., 36, 703715.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Keenan T. D. , and Chandrasekar V. , 2001: Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 19061915.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Huang G.-J. , Chandrasekar V. , and Gorgucci E. , 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19, 633645.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Thurai M. , Nakagawa K. , Huang G. J. , Kobayashi T. , Adachi A. , Hanado H. , and Sekizawa S. , 2006: Rainfall estimation from C-band polarimetric radar in Okinawa, Japan: Comparisons with 2D-video disdrometer and 400 MHz wind profiler. J.Meteor. Soc. Japan, 84, 705724.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Williams C. R. , Thurai M. , and May P. T. , 2009: Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J. Atmos. Oceanic Technol., 26, 21072122.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Rico-Ramirez M. A. , and Thurai M. , 2011: Rainfall estimation with an operational polarimetric C-band radar in the United Kingdom: Comparison with a gauge network and error analysis. J. Hydrometeor., 12, 935954.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., and Krajewski W. F. , 1999: On the estimation of radar rainfall error variance. Adv. Water Resour., 22, 585595.

  • Doviak, R. J., Bringi V. N. , Ryzhkov A. , Zahrai A. , and Zrnić D. , 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17, 257278.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., Bellon A. , Duncan M. R. , and Austin G. L. , 1994: High resolution rainfall measurements by radar for very small basins: The sampling problem reexamined. J. Hydrol., 161, 415428.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., and Krajewski W. F. , 2004: Assessment of the statistical characterization of small-scale rainfall variability from radar: Analysis of TRMM ground validation datasets. J. Appl. Meteor., 43, 11801199.

    • Search Google Scholar
    • Export Citation
  • Gertzmann, H., and Atlas D. , 1977: Sampling errors in the measurement of rain and hail parameters. J. Geophys. Res., 82, 49554966.

  • Gorgucci, E., Chandrasekar V. , Bringi V. N. , and Scarchilli G. , 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59, 23732384.

    • Search Google Scholar
    • Export Citation
  • Habib, E., and Krajewski W. F. , 2002: Uncertainty analysis of the TRMM ground-validation radar-rainfall products: Application to the TEFLUN-B field campaign. J. Appl. Meteor., 41, 558572.

    • Search Google Scholar
    • Export Citation
  • Huang, G.-J., Bringi V. N. , and Thurai M. , 2008: Orientation angle distributions of drops after an 80-m fall using a 2D video disdrometer. J. Atmos. Oceanic Technol., 25, 17171723.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J., and Bringi V. N. , 1995: An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos. Oceanic Technol., 12, 643648.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Blackman T. M. , 2002: The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. J. Appl. Meteor., 41, 286297.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., and Kostinski A. B. , 1999: Fluctuation properties of precipitation. Part V: Distribution of rain rates—Theory and observations in clustered rain. J. Atmos. Sci., 56, 39203932.

    • Search Google Scholar
    • Export Citation
  • Kim, D.-S., Maki M. , and Lee D.-I. , 2010: Retrieval of three-dimensional raindrop size distribution using X-band polarimetric radar data. J. Atmos. Oceanic Technol., 27, 12651285.

    • Search Google Scholar
    • Export Citation
  • Le Bouar, E., Testud J. , and Keenan T. D. , 2001: Validation of the rain profiling algorithm “ZPHI” from the C-band polarimetric weather radar in Darwin. J. Atmos. Oceanic Technol., 18, 18191837.

    • Search Google Scholar
    • Export Citation
  • Lee, C. K., Lee G. W. , Zawadzki I. , and Kim K.-E. , 2009: A preliminary analysis of spatial variability of raindrop size distributions during stratiform rain events. J. Appl. Meteor. Climatol., 48, 270283.

    • Search Google Scholar
    • Export Citation
  • Lee, J. S., 1980: Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell., 2, 165168.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2010: Evaluating polarimetric X-band radar rainfall estimators during HMT. J. Atmos. Oceanic Technol., 27, 122134.

  • Matrosov, S. Y., Kingsmill D. E. , Martner B. E. , and Ralph F. M. , 2005: The utility of X-band polarimetric radar for quantitative estimates of rainfall parameters. J. Hydrometeor., 6, 248262.

    • Search Google Scholar
    • Export Citation
  • Miriovsky, B. J., and Coauthors, 2004: An experimental study of small-scale variability of radar reflectivity using disdrometer observations. J. Appl. Meteor., 43, 106118.

    • Search Google Scholar
    • Export Citation
  • Moore, R. J., Jones D. A. , Cox D. R. , and Isham V. S. , 2000: Design of the HYREX raingauge network. Hydrol. Earth Syst. Sci., 4, 523530.

    • Search Google Scholar
    • Export Citation
  • Moreau, E., Testud J. , and Le Bouar E. , 2009: Rainfall spatial variability observed by X-band weather radar and its implication for the accuracy of rainfall estimates. Adv. Water Resour., 32, 10111019.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., Knupp K. R. , Cecil D. J. , and Mecikalski J. R. , 2007: The University of Alabama Huntsville THOR Center instrumentation: Research and operational collaboration. Preprints, 33rd Int. Conf. on Radar Meteorology, Cairns, Queensland, Australia, Amer. Meteor. Soc., 5.1. [Available online at http://ams.confex.com/ams/33Radar/techprogram/paper_123410.htm.]

  • Rico-Ramirez, M. A., Cluckie I. D. , Shepherd G. , and Pallot A. , 2007: A high-resolution radar experiment on the island of Jersey. Meteor. Appl., 14, 117129.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Giangrande S. E. , and Schuur T. J. , 2005: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515.

    • Search Google Scholar
    • Export Citation
  • Schönhuber, M., Lammer G. , and Randeu W. L. , 2008: The 2D-video-distrometer. Precipitation: Advances in Measurement, Estimation and Prediction, S. Michaelides, Ed., Springer, 3–32.

  • Schuur, T. J., Ryzhkov A. V. , Zrnić D. S. , and Schönhuber M. , 2001: Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J. Appl. Meteor., 40, 10191034.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., Bringi V. N. , and Al-Khatib H. H. , 1981: A preliminary study of comparative measurements of rainfall rate using the differential reflectivity radar technique and a raingage network. J. Appl. Meteor., 20, 13621368.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., Aydin K. , and Direskeneli H. , 1986: Disdrometer measurements during an intense rainfall event in central Illinois: Implications for differential reflectivity radar observations. J. Climate Appl. Meteor., 25, 835846.

    • Search Google Scholar
    • Export Citation
  • Tan, J., Goddard J. W. F. , and Thurai M. , 1995: Applications of differential propagation phase in polarisation-diversity radars at S-band and C-band. Preprints, Ninth Int. Conf. on Antennas and Propagation, Eindhoven, Netherlands, IEE, 336–341.

  • Tapiador, F. J., Checa R. , and de Castro M. , 2010: An experiment to measure the spatial variability of rain drop size distribution using sixteen laser disdrometers. Geophys. Res. Lett., 37, L16803, doi:10.1029/2010GL044120.

    • Search Google Scholar
    • Export Citation
  • Testud, J., Le Bouar E. , Obligis E. , and Ali-Mehenni M. , 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., and Bringi V. N. , 2011: Inter-comparison and reliability study of the next generation 2D-video disdrometer. Final Rep. for NASA Grant NNX09AD72G, 24 pp.

  • Thurai, M., Huang G.-J. , Bringi V. N. , Randeu W. L. , and Schönhuber M. , 2007: Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Oceanic Technol., 24, 10191032.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., Bringi V. N. , and Petersen W. A. , 2009: Rain microstructure retrievals using 2-D video disdrometer and C-band polarimetric radar. Adv. Geosci., 20, 1318.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and Bashor P. G. , 2010: An experimental study of small-scale variability of raindrop size distribution. J. Appl. Meteor. Climatol., 49, 23482365.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., and May P. T. , 2008: Uncertainties in profiler and polarimetric DSD estimates and their relation to rainfall uncertainties. J. Atmos. Oceanic Technol., 25, 18811887.

    • Search Google Scholar
    • Export Citation
  • Wong, R. K. W., and Chidambaram N. , 1985: Gamma size distribution and stochastic sampling errors. J. Climate Appl. Meteor., 24, 568579.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1298 672 21
PDF Downloads 256 52 1