Summer Land–Atmosphere Coupling Strength in the United States: Comparison among Observations, Reanalysis Data, and Numerical Models

Rui Mei Department of Civil and Environmental Engineering, and Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Rui Mei in
Current site
Google Scholar
PubMed
Close
and
Guiling Wang Department of Civil and Environmental Engineering, and Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Guiling Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the land–atmosphere coupling strength during summer over subregions of the United States based on observations [Climate Prediction Center (CPC)–Variable Infiltration Capacity (VIC)], reanalysis data [North American Regional Reanalysis (NARR) and NCEP Climate Forecast System Reanalysis (CFSR)], and models [Community Atmosphere Model, version 3 (CAM3)–Community Land Model, version 3 (CLM3) and CAM4–CLM4]. The probability density function of conditioned correlation between soil moisture and subsequent precipitation or surface temperature during the years of large precipitation anomalies is used as a measure for the coupling strength. There are three major findings: 1) among the eight subregions (classified by land cover types), the transition zone Great Plains (and, to a lesser extent, the Midwest and Southeast) are identified as hot spots for strong land–atmosphere coupling; 2) soil moisture–precipitation coupling is weaker than soil moisture–surface temperature coupling; and 3) the coupling strength is stronger in observational and reanalysis products than in the models examined, especially in CAM4–CLM4. The conditioned correlation analysis also indicates that the coupling strength in CAM4–CLM4 is weaker than in CAM3–CLM3, which is further supported by Global Land–Atmosphere Coupling Experiments1 (GLACE1)-type experiments and attributed to changes in CAM rather than modifications in CLM. Contrary to suggestions in previous studies, CAM–CLM models do not seem to overestimate the land–atmosphere coupling strength.

Corresponding author address: Guiling Wang, Department of Civil and Environmental Engineering, University of Connecticut, 261 Glenbrook Rd., Storrs, CT 06269-2037. E-mail: gwang@engr.uconn.edu

Abstract

This study examines the land–atmosphere coupling strength during summer over subregions of the United States based on observations [Climate Prediction Center (CPC)–Variable Infiltration Capacity (VIC)], reanalysis data [North American Regional Reanalysis (NARR) and NCEP Climate Forecast System Reanalysis (CFSR)], and models [Community Atmosphere Model, version 3 (CAM3)–Community Land Model, version 3 (CLM3) and CAM4–CLM4]. The probability density function of conditioned correlation between soil moisture and subsequent precipitation or surface temperature during the years of large precipitation anomalies is used as a measure for the coupling strength. There are three major findings: 1) among the eight subregions (classified by land cover types), the transition zone Great Plains (and, to a lesser extent, the Midwest and Southeast) are identified as hot spots for strong land–atmosphere coupling; 2) soil moisture–precipitation coupling is weaker than soil moisture–surface temperature coupling; and 3) the coupling strength is stronger in observational and reanalysis products than in the models examined, especially in CAM4–CLM4. The conditioned correlation analysis also indicates that the coupling strength in CAM4–CLM4 is weaker than in CAM3–CLM3, which is further supported by Global Land–Atmosphere Coupling Experiments1 (GLACE1)-type experiments and attributed to changes in CAM rather than modifications in CLM. Contrary to suggestions in previous studies, CAM–CLM models do not seem to overestimate the land–atmosphere coupling strength.

Corresponding author address: Guiling Wang, Department of Civil and Environmental Engineering, University of Connecticut, 261 Glenbrook Rd., Storrs, CT 06269-2037. E-mail: gwang@engr.uconn.edu
Save
  • Betts, A. K., Ball J. H. , Beljaars A. C. M. , Miller M. J. , and Viterbo P. , 1994: Coupling between land-surface, boundary-layer parameterizations and rainfall on local and regional scales: Lessons from the wet summer of 1993. Preprints, Fifth Symp. on Global Change Studies, Nashville, TN, Amer. Meteor. Soc., 174–181.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Sun W. Y. , 1999: Numerical simulation of the 1993 Midwestern flood: Land–atmosphere interactions. J. Climate, 12, 14901505.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Rep. NCAR/TN-464+STR, 226 pp.

  • Cook, B. I., Bonan G. B. , and Levis S. , 2006: Soil moisture feedbacks to precipitation in southern Africa. J. Climate, 19, 41984206.

  • Dirmeyer, P. A., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13, 29002922.

  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett., 38, L16702, doi:10.1029/2011GL048268.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Schlosser C. A. , and Brubaker K. L. , 2009: Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10, 278288.

    • Search Google Scholar
    • Export Citation
  • D’Odorico, P., and Porporato A. , 2004: Preferential states in soil moisture and climate dynamics. Proc. Natl. Acad. Sci. USA, 101, 88488851.

    • Search Google Scholar
    • Export Citation
  • Dominguez, F., Kumar P. , Liang X. Z. , and Ting M. , 2006: Impact of atmospheric moisture storage on precipitation recycling. J. Climate, 19, 15131530.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776.

  • Eltahir, E. A. B., and Bras R. L. , 1996: Precipitation recycling. Rev. Geophys., 34, 367378.

  • Findell, K. L., and Eltahir E. A. B. , 1997: An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois. Water Resour. Res., 33, 725735.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570572.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., Gentine P. , Linter B. R. , and Kerr C. , 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439, doi:10.1038/NGEO1174.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and Hasselmann K. , 1977: Stochastic climate models, part II. Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Shi W. , Yarosh E. , and Joyce R. , 2000: Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center ATLAS 7, Camp Springs, MD, 40 pp.

  • Kim, Y. J., and Wang G. L. , 2007: Impact of initial soil moisture anomalies on subsequent precipitation over North America in the coupled land–atmosphere model CAM3–CLM3. J. Hydrometeor., 8, 513533.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , and Heiser M. , 2000: Variance and predictability of precipitation at seasonal-to-interannual time scales. J. Hydrometeor., 1, 2646.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140.

  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Schubert S. D. , and Suarez M. J. , 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: The contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2011: The second phase of the Global Land–Atmosphere Coupling Experiment: Soil moisture contributions to subseasonal forecast skill. J. Hydrometeor., 12, 805822.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , and Wood E. F. , 1996a: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res., 101 (D16), 21 40321 422.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Wood E. F. , and Lettenmaier D. P. , 1996b: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modifications. Global Planet. Change, 13, 195206.

    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., Reed B. C. , Brown J. F. , Ohlen D. O. , Zhu J. , Yang L. , and Merchant J. W. , 2001: Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR data. Int. J. Remote Sens., 21, 13031330.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Wood A. W. , Adam J. C. , Lettenmaier D. P. , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251.

    • Search Google Scholar
    • Export Citation
  • Mei, R., and Wang G. L. , 2011: Impact of sea surface temperature and soil moisture on summer precipitation in the United States based on observational data. J. Hydrometeor., 12, 10861099.

    • Search Google Scholar
    • Export Citation
  • Meng, L., and Quiring S. M. , 2008: A comparison of soil moisture models using Soil Climate Analysis Network observations. J. Hydrometeor., 9, 641659.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Rep. NCAR/TN -485+STR, 212 pp.

  • New, M., Washington R. , Jack C. , and Hewitson B. , 2003: Sensitivity of southern African climate to soil moisture. CLIVAR Exchanges, No. 8, International CLIVAR Project Office, Southampton, United Kingdom, 45–47.

  • Notaro, M., 2008: Statistical identification of global hot spots in soil moisture feedbacks among IPCC AR4 models. J. Geophys. Res., 113, D09101, doi:10.1029/2007JD009199.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., Liu Z. , and Williams J. W. , 2006: Observed vegetation–climate feedbacks in the United States. J. Climate, 19, 763786.

  • Oglesby, R. J., Marshall S. , Erickson D. J. III, Roads J. O. , and Robertson F. R. , 2002: Thresholds in atmosphere–soil moisture interactions: Results from climate model studies. J. Geophys. Res., 107, 4224, doi:10.1029/2001JD001045.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 174 pp.

  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp.

  • Orlowsky, B., and Seneviratne S. I. , 2010: Statistical analyses of land–atmosphere feedbacks and their possible pitfalls. J. Climate, 23, 39183932.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Eltahir E. A. B. , 2001: Pathways relating soil moisture conditions to future summer precipitation within a model of the land–atmosphere system. J. Climate, 14, 12271242.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Eltahir E. A. B. , 2002: Teleconnections of soil moisture and precipitation during the 1993 midwest summer flood. Geophys. Res. Lett., 29, 1865, doi:10.1029/2002GL014815.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., Parker D. E. , Horton E. B. , Folland C. K. , Alexander L. V. , Rowell D. P. , Kent E. C. , and Kaplan A. , 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., and Nigam S. , 2005: Warm season rainfall variability over the U.S. Great Plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations. J. Climate, 18, 18081830.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., and Nigam S. , 2006: Great Plains hydroclimate variability: The view from North American Regional Reanalysis. J. Climate, 19, 30043010.

    • Search Google Scholar
    • Export Citation
  • Saha S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Salvucci, G. D., Saleem J. A. , and Kaufmann R. , 2002: Investigating soil moisture feedbacks on precipitation with tests of Granger causality. Adv. Water Resour., 25, 13051312.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Corti T. , Davin E. L. , Hirschi M. , Jaeger E. B. , Lehner I. , Orlowsky B. , and Teuling A. J. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161.

    • Search Google Scholar
    • Export Citation
  • Wang, G. L., Kim Y. J. , and Wang D. G. , 2007: Quantifying the strength of soil moisture–precipitation coupling and its sensitivity to changes in surface water budget. J. Hydrometeor., 8, 551570.

    • Search Google Scholar
    • Export Citation
  • Zeng, X. B., Barlage M. , Castro C. , and Fling K. , 2010: Comparison of land–precipitation coupling strength using observations and models. J. Hydrometeor., 11, 979994.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1480 920 45
PDF Downloads 466 105 10